Universidad de Costa Rica Facultad de Ciencias Escuela de Biología

Determinación de árboles asociados a bosques ribereños en tres sub
cuencas del río Grande de Térraba; Río Volcán, Quebrada Dibujada y
Quebrada Fría

Tesis para optar por el grado de Licenciatura en Biología con énfasis en Botánica

Luis Ángel Madrigal Alfaro 935484 Ciudad Universitaria Rodrigo Facio 2019

MIEMBROS DEL TRIBUNAL

Eduardo Chacón Madrigal, M.Sc. Director de tesis	Daniel Briceño Lobo, M.Sc. Presidente del Tribunal Examinador
Jorge Picado Barboza, M.Sc. Lector de tesis	Gerardo Avalos Rodrígue, Ph.D. Miembro del tribunal examinador
Elmer García Díaz, M.Sc.	 Luis Ángel Madrigal Alfaro
Lector de tesis	Postulante

"Un pájaro posado en un árbol nunca tiene miedo de que la rama se rompa, porque su confianza no está en la rama, sino en sus propias alas."

AGRADECIMIENTOS

A Dios por dejarme amanecer un día más y aprender un poco sobre los acontecimientos de esta vida y compartir con mi familia y amigos algún momento. Por crear los árboles que me han dado tanto, que por simples que sean nos despiertan ese interés para hacer un alto en el camino y explorarlos.

A mis hijos María José, Jose Mario y Camila por ser el impulso de cada día para luchar y resolver situaciones adversas y convertirlas en escalones para subir y poder aprender de ellos el mayor tiempo posible.

A mi esposa por ser el árbol donde me refugio hasta que pase la tormenta y salga el sol de nuevo, la que me impulsa para seguir adelante.

A mi padre y madre por darme la oportunidad de viajar a este mundo y por sostenerme con un abrazo cuando estoy a punto de caer.

A mis hermanos Hilda, Hania y Melvin por sus abrazos y sonrisas cuando retrocedí y cuando avancé.

Al tutor Eduardo Chacón, más que mi tutor o mejor amigo, mi hermano por su amistad, compañía, paciencia e impulso en este proyecto.

De igual manera agradezco a Elmer García, Fredy Centeno y Jorge Picado por diversos aportes en este trabajo, además a Henry Fallas, Edgar Chinchilla y a la familia Padilla O. por su acompañamiento y esfuerzo durante la realización del trabajo de campo.

Agradezco al proyecto Diquís-ICE por su colaboración para los estudios de campo en la Finca Camaronal (Sitio Quebrada Fría), al Ing. Jose Joaquín Rodríguez de Corporación de desarrollo agrícola Del Monte (División PINDECO) por su colaboración para realizar el trabajo de campo en el Refugio Privado de Vida Silvestre Montaña El Tigre (Sitio Río Volcán) y a Minor Badilla por su colaboración para el trabajo de campo en finca La Chaparrita (Sitio Quebrada Dibujada).

Finalmente a todas las personas que me han ayudado de tantas formas y que no he mencionado les agradezco mucho sus aportes que hicieron posible de una u otra forma que este trabajo se pudiese terminar.

ÍNDICE GENERAL

INTRODUC	CIÓN	. 1
1	Marco Teórico	1
2	Antecedentes	2
OBJETIVOS	S	5
1	Objetivo general	5
2	Objetivos específicos.	5
METODOLO)GÍA	6
1	Área de estudio	6
1.1	Cuenca del río Grande de Térraba	6
1.2	Río Volcán	7
1.3	Quebrada Fría	9
1.4	Quebrada Dibujada	10
2	Diseño de muestreo	11
3	Análisis de datos	13
RESULTAD	os 1	14
1	Río Volcán	17
1.1	Bosque no ribereño.	18
1.2	Bosque ribereño.	22
2	Quebrada Fría.	27
2.1	Bosque no ribereño.	27
2.2	Bosque ribereño.	31
3	Quebrada Dibujada	35

3.1	Bosque no ribereño.	36
3.2	Bosque ribereño.	40
	NTEGRAL ENTRE ESPECIES DE BOSQUE RIBEREÑO Y N	
1	Rarefacción	44
2	Análisis de Similitud.	46
3	Especies encontradas sólo en bosque ribereño.	46
4 no ribereño	Especies de bosque ribereño que también se encontraron en bosq	
DISCUSION		55
1	Riqueza	55
2	Composición florística	56
3	Especies determinadas solo en ecosistemas ribereños	59
4 no ribereño	Especies de bosque ribereño que también se encontraron en bosq	
5 el estudio	Restauración de bosque ribereño con las especies determinadas	
5.1	Recomendaciones sobre el sistema de siembra	62
5.2	Prioridad de las especies y reproducción.	64
CONCLUSIO	ONES	66
BIBLIOGRA	FÍA	67
ANFXOS		74

ÍNDICE DE CUADROS

Cuadro 1. Resumen por nivel taxonómico sobre los registros obtenidos en las tres
subcuencas del río Grande de Térraba, río Volcán, quebradas Dibujada y Fría, 2017.
Cuadro 2. Especies de mayor dominancia y valor de importancia (IVI) registradas en tres subcuencas del río Grande de Térraba, río Volcán, quebradas Dibujada y Fría, 2017
Cuadro 3. Especies registradas en el bosque no ribereño que también ocurrieron en el ecosistema ribereño de río Volcán, subcuenca del río Grande de Térraba, 2017
Cuadro 4. Especies de mayor dominancia y valor de importancia (IVI) registradas en el bosque no ribereño del río Volcán, subcuenca del río Grande de Térraba, 2017
Cuadro 5. Registros obtenidos solo en bosque ribereño del sitio río Volcán, subcuenca del río Grande de Térraba, 2017
Cuadro 6. Especies de mayor dominancia y valor de importancia (IVI) registradas en bosque ribereño del río Volcán, subcuenca del río Grande de Térraba, 2017. 26
Cuadro 7. Registros en bosque no ribereño que también se encontraron en bosque ribereño del sitio quebrada Fría, subcuenca del río Grande de Térraba, 2017 29
Cuadro 8. Especies de mayor dominancia y valor de importancia (IVI) registradas en bosque no ribereño de quebrada Fría, subcuenca del río Grande de Térraba, 2017
Cuadro 9. Registros obtenidos solo en el bosque ribereño de quebrada Fría, subcuenca del río Grande de Térraba, 2017
Cuadro 10. Especies de mayor dominancia y valor de importancia (IVI) registradas en bosque ribereño de quebrada Fría, subcuenca del río Grande de Térraba, 2017.
Cuadro 11. Registros obtenidos en bosque no ribereño que también se encontraron en el bosque ribereño de quebrada Dibujada, subcuenca del río Grande de Térraba, 2017

Cuadro 12. Especies de mayor dominancia y valor de importancia (IVI) registradas en el bosque no ribereño de quebrada Dibujada, subcuenca del río Grande de Térraba, 201740
Cuadro 13. Registros obtenidos solo en el bosque ribereño de quebrada Dibujada, subcuenca del río Grande de Térraba, 2017
Cuadro 14. Especies de mayor dominancia y valor de importancia (IVI) registradas en el bosque ribereño de quebrada Dibujada, subcuenca del río Grande de Térraba, 201743
Cuadro 15. Especies registradas solo en bosque ribereño de tres subcuencas del río Grande de Térraba, río Volcán, quebrada Fría y quebrada Dibujada, 2017 48
Cuadro 16. Especies registradas solo en bosque ribereño y dentro de zonas de inundación de 0-5 m de los cauces de tres subcuencas del río Grande de Térraba, río Volcán, quebrada Fría y quebrada Dibujada, 2017
Cuadro 17. Especies registradas en ecosistemas ribereños y no ribereños, en tres subcuencas del río Grande de Térraba, río Volcán, quebrada Fría y quebrada Dibujada, 201752

ÍNDICE DE FIGURAS

Figura 1. Area del Proyecto PHED (capa de coberturas Fonafifo 2012) y los sitios
de muestreo para determinar especies de árboles asociados a bosques ribereños
en tres sub-cuencas del río Grande de Térraba; Río Volcán, Quebrada Dibujada y
Quebrada Fría, 2017 8
Figura 2. Sitio de muestreo Río Volcán y alrededores, 2017 (imagen satelital Esri 2018)9
Figura 3. Sitio de muestreo Quebrada Fría y alrededores, 2017(imagen satelital ESRI 2018)
Figura 4. Sitio de muestreo Quebrada Dibujada y alrededores, 2017(imagen satelital ESRI 2018)
Figura 5. Esquema del diseño de muestreo para determinar especies de árboles
asociados a bosques ribereños en tres sub-cuencas del río Grande de Térraba; Río
Volcán, Quebrada Dibujada y Quebrada Fría, 201712
Figura 6. Distribución del diámetro a la altura del pecho (DAP) y de altura de los
árboles registrados en las tres subcuencas estudiadas del río Grande de Térraba,
2017
Figura 7. Especies de mayor abundancia y frecuencia registradas en bosque no
ribereño del río Volcán, subcuenca del río Grande de Térraba, 2017 19
Figura 8. Especies de mayor abundancia y frecuencia registradas en bosque
ribereño del río Volcán, subcuenca del río Grande de Térraba, 2017 23
Figura 9. Especies de mayor abundancia y frecuencia registradas en bosque no
ribereño de quebrada Fría, subcuenca del río Grande de Térraba, 2017 28
Figura 10. Especies de mayor abundancia y frecuencia registradas en bosque
ribereño de quebrada Fría, subcuenca del río Grande de Térraba, 2017 31

Figura 11. Especies de mayor abundancia y frecuencia registradas en bosque no ribereño de quebrada Dibujada, subcuenca del río Grande de Térraba, 2017 37
Figura 12. Especies de mayor abundancia y frecuencia registradas en bosque ribereño de quebrada Dibujada, subcuenca del río Grande de Térraba, 2017 41
Figura 13. Análisis para la evaluación de la completitud de la muestra mediante curvas de rarefacción de ecosistemas ribereños (azonal) y no ribereños (zonal) basadas en el número de individuos registradas en tres subcuencas del río Grande de Térraba, 2017
Figura 14. Curvas de rarefacción del total de especies de árboles, de las especies comunes y de las especies dominantes usando los números de Hill 0,1 y 2 respectivamente, basadas en el número de individuos y especies registradas en bosques ribereños (azonales) y bosques no ribereños (zonal) de tres subcuencas del río Grande de Térraba, 2017
Figura 15. Análisis de disimilitud de la composición de especies de árboles registrada en bosques ribereños (azonales) y no ribereños (zonales) de tres subcuencas del río Grande de Térraba, río Volcán, quebrada Fría y quebrada Dibujada, 2017

ÍNDICE DE ANEXOS

Anexo 1. Especies forestales registradas en tres subcuencas del río Grande de
Térraba, río Volcán, quebradas Dibujada y Fría, 2017. Se indica la abundancia en
bosque no ribereño (BNR), bosque ribereño (BR), abundancia total (A), dominancia
(D) y el índice de valor de importancia74
Anexo 2. Especies registradas en ecosistemas no ribereños del río Volcán,
subcuenca del río Grande de Térraba, 2017 78
Anexo 3. Especies registradas en ecosistemas ribereños del río Volcán, subcuenca del río Grande de Térraba, 2017
Anexo 4. Especies registradas en ecosistemas no ribereños de quebrada Fría, subcuenca del río Grande de Térraba, 2017
Anexo 5. Especies registradas en ecosistemas ribereños de quebrada Fría, subcuenca del río Grande de Térraba, 2017
Anexo 6. Especies registradas en ecosistemas no ribereños de quebrada Dibujada,
subcuenca del río Grande de Térraba, 2017 87
Anexo 7. Especies registradas en ecosistemas ribereños de quebrada Dibujada, subcuenca del río Grande de Térraba, 2017
Anexo 8. Prioridad para restauración de bosque ribereño de las especies
registradas en las subcuencas del río Volcán y quebradas Fría y Dibujada,
subcuencas del río Grande de Térraba, 201790

RESUMEN

Los bosques ribereños o azonales presentan una gran diversidad florística así como de servicios ecosistémicos. Poseen características especiales como mayor luminosidad, humedad y nutrientes en comparación con los bosques zonales, además una alta dinámica temporal y espacial relacionada con el cauce cercano. Esto es aprovechado solamente por ciertas especies de plantas, incidiendo en la composición de la comunidad con respecto a zonas o ecosistemas aledaños. Por ser ecosistemas lineales tienen menor área y por ser diferentes a los bosques zonales tiene cierta unicidad que no se puede encontrar en otros ecosistemas.

En Costa Rica estos ecosistemas actualmente son amenazados por actividades forestales, ganadería, agricultura y desarrollo urbano. Esto ha llevado a que actualmente solo quede el 52% de los bosques ribereños y por lo tanto una gran parte requiere restauración. Sin embargo, son limitados los estudios que evalúan la composición florística de bosques ribereños en comparación con los aledaños o no ribereños (zonales) y no se conoce cuáles especies se deben utilizar para restaurar. Uno de estos sitios en donde se ha perdido bosques ribereños es la cuenca del Río Térraba. El objetivo principal del estudio fue identificar especies de árboles asociados a bosques ribereños mediante la comparación de especies forestales de bosques zonales y ribereños en tres sub-cuencas del río Grande de Térraba y formular recomendaciones para la restauración de estos ecosistemas.

Se estudiaron tres sub-cuencas del río Grande de Térraba, identificando los árboles con diámetro igual o mayor a 15 cm en parcelas de 750 m². En cada subcuenca se ubicaron 5 parcelas en el bosque ribereño, en la zona de protección del cauce o 15 m de la orilla de este hacia afuera y 5 en el bosque no ribereño o zonal a 50 m del cauce hacia afuera utilizando ambos lados del río o quebrada, para un total de 30 parcelas. Usando las frecuencias absolutas y calculando índice de valor de importancia (IVI) se analizó la diversidad y la composición de árboles de cada tipo de bosque en cada una de las subcuencas y utilizando índices de similitud se comparó la comunidad entre los tipos de bosque.

Entre las subcuencas estudiadas se encontraron diferencias en composición florística así como entre los ecosistemas no ribereños y ribereños, donde este último presentó menor riqueza, abundancia y área basal. Cerca del 50% de las especies registradas en ecosistemas ribereños (33 especies) no fueron encontradas fuera de este, presentando tanto baja abundancia como baja frecuencia. El 36% de estas especies fueron localizadas a menos de 5 m del cauce en zonas de inundación. Mientras que el 64% de las especies identificadas en ecosistemas no ribereños (115 en total) se registraron también en ecosistemas ribereños (74 especies), donde presentaron mayor área basal e índice de valor de importancia.

Se encontró que los bosques ribereños tienen una composición florística diferente a los bosques no ribereños y que estas diferencias se dan particularmente en cada cuenca porque estas también difieren entre sí. Estas diferencias entre ecosistemas dentro de una misma cuenca probablemente se deben a las condiciones de mayor luminosidad, humedad, y de nutrientes que previamente se han reportado en los bosques ribereños. Por otra parte las diferencias entre cuencas probablemente son producto de los cambios regionales en el clima y a las relaciones biogeográficas. Esta diferencia en composición florística de los ecosistemas de ribera es de gran importancia económica como ecológica y tienen implicaciones en la conservación. Las especies encontradas solo en estos ambientes ribereños adquieren prioridad para restaurar estos ecosistemas. Particularmente, debe haber un estudio previo en cada región que se quiere estudiar antes de hacer actividades de restauración. La selección adecuada de especies puede restaurar más rápidamente la función de los ecosistemas y los servicios que estos proveen.

INTRODUCCIÓN

1 Marco Teórico

Los bosques ribereños son hábitats diversos, dinámicos y complejos. Son la interface (ecotono) entre sistemas terrestres y acuáticos, abarcando diferentes gradientes ambientales y procesos ecológicos. Controlan el flujo de energía y materia entre ambos sistemas, manteniendo una alta biodiversidad. Además, debido a la deforestación y fragmentación de los bosques circundantes, se convierten en refugio y hábitat crítico para la conservación de especies raras y amenazadas (Pusey y Arthington 2003, Vázquez *et al.* 2015).

En los ecosistemas de ribera la composición de la flora y fauna está fuertemente determinada por la intensidad lumínica, la presencia y fluctuaciones del agua, y la granulometría del suelo (Romero 2014, Biurrun *et al.* 2016). El suelo de estos ambientes recibe parte de los nutrientes (ej. nitrógeno y fósforo) transportados por la escorrentía, desde el bosque circundante hasta los cursos de agua. Esto facilita el ciclo de elementos y compuestos esenciales (Sánchez *et al.* 2006, Romero 2014). Además, la vegetación ribereña, aumenta la estabilidad de las orillas de los cauces y proporciona importantes cantidades de detritos vegetales (madera y hojas muertas), los cuales reducen la velocidad de la corriente, amortiguan las crecidas y crean zonas de remanso favorables para la colonización de especies animales (Sánchez *et al.* 2006, Vázquez *et al.* 2015).

A nivel de composición de la vegetación a menudo hay un contraste entre las especies de ribera y las que crecen en suelos no relacionados directamente a la influencia de los ríos. Los árboles de ribera típicamente están adaptados a suelos fértiles y son capaces de resistir la inundación (Elosegi y Díez 2008), mientras que los árboles en los suelos alejados de las riberas generalmente son especies asociadas a suelos lavados menos fértiles. Esto produce patrones de zonificación a lo largo de los márgenes, y están bien documentados en grandes ríos (Prance 1979, Keel y Salo *et al.* 1986, Junk y Piedade 1997, Worbes 1997, Ferreira 1997, 2000,

Ferreira y Prance 1998). Este gradiente selecciona a las especies de acuerdo a su ciclo de vida, duración, tasa de crecimiento y densidad de la madera. Es desconocido si gradientes más débiles en los márgenes de los pequeños ríos pueden jugar el mismo papel. La restricción de especies de los márgenes de pequeños cursos de agua es obvia para muchos observadores pero no ha sido previamente documentada (Pignatari *et al.* 2008).

2 Antecedentes

Los cambios en el uso del suelo como la urbanización y la deforestación, así como la creación de embalses para producir electricidad o para uso agrícola modifican las características del caudal del río, sus parámetros físicos y químicos, además de su morfología. Estas alteraciones pueden afectar severamente la función de este ecosistema como filtro de la zona ribereña, destruyendo los hábitats adyacentes y la capacidad de estos de servir como corredores, lo que en última instancia provoca una disminución de la riqueza de organismos (Wang 2013, Anderson *et al.* 2015).

Estos impactos en los ecosistemas de ribera, han sido documentados tanto en Costa Rica como en otras regiones del mundo (Lorion y Kennedy 2009, Sekercioglu 2009, González 2012). Para mitigarlos, en el país existen instituciones que buscan recuperar la cobertura forestal principalmente en zonas de protección de cauces, como por ejemplo FONAFIFO (Fondo Nacional de Financiamiento Forestal), proyectos ICE (Instituto Costarricense de Electricidad), manejo de cuencas (CONCURE) y AyA (Acueductos y Alacantarillados), entre otros. Sin embargo, no existen publicaciones científicas que faciliten la selección de especies utilizadas para la restauración de estos bosques azonales. Esta carencia de apoyo para la escogencia de especies se debe a la ausencia de información sobre la composición forestal de estos ecosistemas, que en el caso de Costa Rica es limitada. Esto compromete el éxito de los esfuerzos de restauración y el funcionamiento de estos ecosistemas ribereños.

En Costa Rica el bosque de ribera representa un 3,3% de la superficie del país, según análisis de la cobertura forestal al 2013 (SINAC 2013). De ese porcentaje cerca del 52% aún tiene cobertura boscosa. La disminución de la cobertura ha sido causada por la expansión de la frontera agrícola y ganadera en las zonas rurales de Costa Rica y por la urbanización en el Valle Central. En la cuenca del río Grande de Térraba la situación es similar a la del país; existe un 3.25 % (18448 ha) de zonas ribereñas con aproximadamente un 45 % (8000 ha) de su zona de protección (15 m en pendientes menores al 40 %, según Ley Forestal No.7575) que está deforestada.

En la cuenca del río Grande de Térraba se han desarrollado históricamente diversas actividades agropecuarias que incluyen cultivos como café, arroz, maíz, frijol, piña, caña y pastos para ganadería extensiva (Baltodano 2007, Cedeño *et al.* 2010). Estos usos del suelo contribuyeron con una reducción de la vegetación incluyendo la que estaba en las riberas (Umaña y Springer 2006). Sumado a lo anterior, el Instituto Costarricense de Electricidad ha propuesto el desarrollo del Proyecto Hidroeléctrico El Diquís (PHED), con un área de embalse de más de 6600 Ha (Picado 2012). El 3% de esta área corresponde a zonas de protección de ríos y quebradas con aproximadamente el 50% de cobertura boscosa según análisis realizado con la capa de cobertura de bosques de Fonafifo (SINAC 2013).

El PHED ha propuesto como parte de sus compromisos ambientales la recuperación y protección de un área equivalente a la cobertura boscosa afectada (más de 2500 Ha de bosque), lo cual implicaría reforestación de las riberas del futuro embalse y algunas zonas de protección de ríos y quebradas con especies nativas que puedan adaptarse a estas condiciones. Al igual que las propuestas del PHED para recuperación de cobertura boscosa en zonas de protección de ríos y nacientes, también las hay de otras instituciones como el AyA, FONAFIFO y otras organizaciones no gubernamentales (ONGs), además de proyectos privados para protección de zonas de recarga y acuíferos. Sin embargo, como fue mencionado, al igual que ha sucedido en otros proyectos de restauración de ecosistemas ribereños,

para esta cuenca y la sub-cuencas que la conforman, no existe información sobre especies afines a estas condiciones.

Por estas razones se considera necesario un estudio florístico para identificar especies forestales asociadas a ecosistemas ribereños remanentes en tres subcuencas del río Grande de Térraba y basado en esta lista formular recomendaciones para la recuperación, manejo y conservación de estas zonas.

OBJETIVOS

1 Objetivo general.

Identificar especies de árboles asociados a bosques ribereños mediante la comparación con la comunidad de árboles en bosques no ribereños o zonales con los ribereños o azonales en tres sub-cuencas del río Grande de Térraba, y formular recomendaciones para la restauración de estos ecosistemas.

2 Objetivos específicos.

Identificar especies forestales de bosques no ribereños y ribereños en tres sub-cuencas del río Grande de Térraba.

Comparar y describir las comunidades de bosques no ribereños y bosques ribereños para determinar especies asociadas a este último ecosistema.

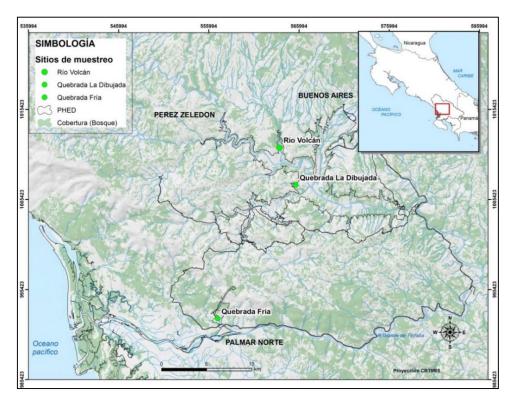
Categorizar el papel ecológico de las especies forestales determinadas en estos bosques ribereños como insumo para la restauración de estos ecosistemas en zonas en las que han sido afectados.

METODOLOGÍA.

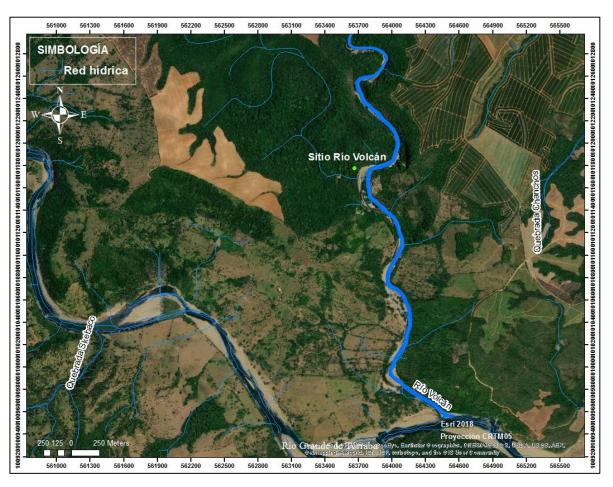
1 Área de estudio

1.1 Cuenca del río Grande de Térraba.

La cuenca del río Grande de Térraba (Figura 1) se encuentra en la parte sur de Costa Rica, al pie de la Cordillera de Talamanca (entre las coordenadas 518831-1045337 y 641664-987393 CRTM05). Esta cuenca drena sus aguas al océano Pacífico y es la más extensa del país, cubriendo más del 10% del territorio nacional continental (Cedeño *et al.* 2010). Esta cuenca presenta una creciente población humana y ha sido deforestada en gran parte de la zona baja para el desarrollo de la agricultura y ganadería (Umaña y Springer 2006).


De acuerdo con el atlas climatológico de Costa Rica (2009), en la cuenca se presentan temperaturas que oscilan entre los 14-16°C (cuenca alta) y 18-28°C (cuenca media y baja), aunque en el año 2018 se observaron temperaturas hasta de 36°C en la cuenca media y baja. Por último, en los últimos años se han manifestado dos períodos muy marcados de precipitación en los meses de mayojunio y setiembre-octubre, para una precipitación media anual de 1500 a 6000 mm, siendo alrededor de los 4000 mm en la parte media y baja.

Según la capa de uso de suelo de Costa Rica (SINAC 2013), la cobertura predominante en la cuenca son los pastos, 159734 ha, producto de la ganadería extensiva. Además de 70717 hectáreas ocupadas por cultivos como la piña y la caña de azúcar. Otros cultivos como frijol, maíz y tiquisque se dan a pequeña escala (Baltodano 2007, Cedeño *et al.* 2010). El resto de coberturas como plantaciones forestales, charrales, cuerpos de agua, infraestructura, caminos y tierra desnuda o yerma cubren entre 972 y 6410 ha. Finalmente en la parte baja de la cuenca, el Humedal Nacional Térraba-Sierpe y pequeños reductos, suman 310130 ha de bosque a la cuenca.


En la parte media y baja de la cuenca del río Grande de Térraba se ubican los sitios de estudio y también aquí es donde se propone construir el PHED, donde existen remanentes boscosos que corresponden en su mayoría a bosques ribereños que se inundarían o serían parte de las obras de construcción. El primer sitio de estudio (6.1.1.1.1.a.Sección 6.1.Anexo 6.2.Cuadro 1.Figura 2) se ubica en la sub-cuenca del río Volcán (290msnm), muy cerca de su desembocadura en el río General, principal afluente del río Grande de Térraba. El segundo sitio (6.1.1.1.1.a.Sección 6.1.Anexo 6.2.Cuadro 1.Figura 3) estaría 5 km aguas abajo, llamado Quebrada Dibujada (275 msnm), pertenece a la sub-cuenca del río Pilas y el tercer sitio (6.1.1.1.1.a.Sección 6.1.Anexo 6.2.Cuadro 1.Figura 4) sería la quebrada Fría (36 msnm) parte de la sub-cuenca del río Camaronal en Palmar Norte, cerca de la desembocadura del río Grande de Térraba.

1.2 Río Volcán

El sitio de estudio río Volcán está ubicado en la parte media de esta subcuenca (longitud 574177, latitud 1013268, Coordenadas CRTM05), cerca de su desembocadura en el río General y a una altitud sobre el nivel del mar de 268 m. Posee en su mayoría bosque primario poco intervenido y es parte del Refugio de Vida Silvestre Privado Montaña el Tigre (316,3 ha). En sus alrededores existen cultivos de piña, ganadería, la carretera Interamericana y bosques secundarios. El río Volcán posee un cauce de aproximadamente 50 metros de ancho y un área de inundación en avenidas extraordinarias de más de 50 metros en su margen derecha donde se ubicaron las parcelas de estudio, esta área sería inundada por el PHED (6.1.1.1.1.a.Sección 6.1.Anexo 6.2.Cuadro 1.Figura 2).

Figura 1. Area del Proyecto PHED (capa de coberturas Fonafifo 2012) y los sitios de muestreo para determinar especies de árboles asociados a bosques ribereños en tres sub-cuencas del río Grande de Térraba; Río Volcán, Quebrada Dibujada y Quebrada Fría, 2017.

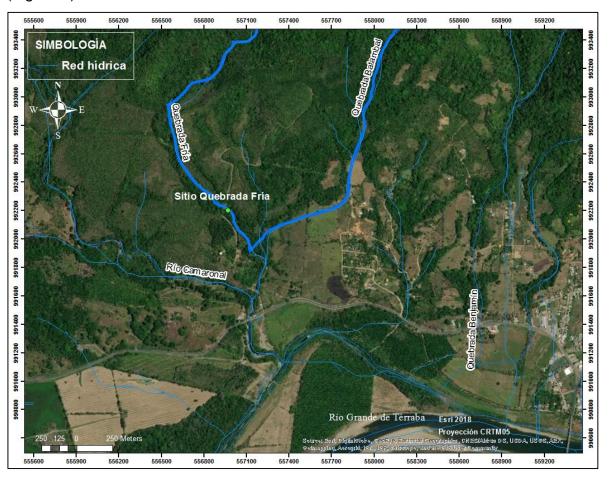


Figura 2. Sitio de muestreo Río Volcán y alrededores, 2017 (imagen satelital Esri 2018).

1.3 Quebrada Fría

Este sitio se localiza en la parte baja de la cuenca del río Grande de Térraba (longitud 556973, latitud 992202, CRTM05), a una altitud de 58 msnm. Pertenece a la sub-cuenca del río Camaronal que desemboca en el río Grande de Térraba y su cobertura es bosque primario intervenido que forma parte de las estribaciones de la Fila Costeña donde posee altos niveles de conectividad boscosa en sus alrededores. Su cauce es de 25 m de ancho con un área de inundación de aproximadamente 20 m, donde se ubicarían las parcelas de bosque ribereño.

Esta área sería afectada por la construcción de la casa de máquinas del PHED (Figura 3).



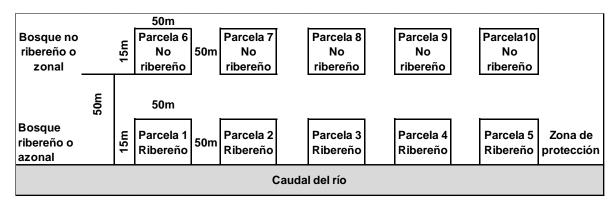
Figura 3. Sitio de muestreo Quebrada Fría y alrededores, 2017(imagen satelital ESRI 2018).

1.4 Quebrada Dibujada

El sitio Quebrada Dibujada se encuentra también en la parte media de la cuenca del río Grande de Térraba (longitud 575540, latitud 1006893, CRTM05), a una altitud sobre el nivel del mar de 275 m. Forma parte de la sub-cuenca del río Pilas y se ubica muy cerca de su desembocadura en el río Grande de Térraba. Su cobertura es bosque secundario en un área rodeada de ganadería extensiva. Posee una cauce de 6 m de ancho y un área de inundación en avenidas extraordinarias de

aproximadamente 15 m, donde se ubicarían las parcelas de bosque ribereño. Este sería inundado si se construye el embalse del PHED (Figura 4).

Figura 4. Sitio de muestreo Quebrada Dibujada y alrededores, 2017(imagen satelital ESRI 2018).


2 Diseño de muestreo.

En el estudio se consideró como zona ribereña los primeros 15 m de las márgenes del cauce (zona de protección de los ríos según Ley Forestal No.7575) de ríos o quebradas. También se registraron las especies ubicadas dentro de la zona de inundación o canal del río y la porción del cauce donde se alcanza el nivel máximo del río (Vázquez *et al.* 2015). Para estudiar la composición de los bosques ribereños se seleccionaron tres cauces con un parche de bosque en algún tramo de

sus riberas. Este parche debía tener una distancia mínima de 100 m perpendicular a su caudal permitiendo ubicar parcelas de muestreo ribereñas como no ribereñas.

En cada río se establecieron cinco parcelas paralelas al cauce (Figura 2, Figura 3, Figura 4,), a una distancia mínima de 50 m entre ellas, y de 50 m de largo por 15 m de ancho (750 m²), (bosque de ribera) y cinco parcelas en el bosque no ribereño (sin influencia del río), ubicadas a 50 m partiendo del borde del cauce, y a 50 m entre ellas, siguiendo la misma dirección que las parcelas ribereñas (Elosegi y Díez 2008) (Figura 5). Se describió el río en la posición de cada parcela con los siguientes descriptores: elevación, uso del suelo en los alrededores, amplitud del cauce y caudal.

Dentro de cada parcela se marcaron y se identificaron las especies forestales con un diámetro mayor o igual a 10 cm, medido con cinta métrica a la altura del pecho (130 cm). La altura fue estimada visualmente previa calibración con individuos medidos usando la cinta métrica. En las parcelas ribereñas se midió la distancia de cada individuo al cauce medio del río.

Figura 5. Esquema del diseño de muestreo para determinar especies de árboles asociados a bosques ribereños en tres sub-cuencas del río Grande de Térraba; Río Volcán, Quebrada Dibujada y Quebrada Fría, 2017.

3 Análisis de datos

Para cada especie se determinó la abundancia (número de individuos de cada una), frecuencia (número de parcelas donde ocurre), dominancia (suma del área basal (AB)= (π/4)*d²) y el valor de importancia (IVI) sobre la magnitud y el rol de participación en la comunidad vegetal, que permite evaluar el peso ecológico (Chávez y Rodríguez 2012). El índice de valor de importancia (IVI) se calculó mediante la sumatoria de los valores relativos de densidad, frecuencia y dominancia e indica la importancia ecológica relativa de las especies en la comunidad (Soler *et al.* 2012).

Para describir los patrones de diversidad y completitud de las muestras (esfuerzo de muestreo), se construyeron curvas de rarefacción, para lo que se utilizó el paquete iNExt (Chao *et al.* 2014) para el programa R (R Core Team 2014). Para cada tipo de bosque se construyeron curvas de rarefacción usando los números de Hill 0, 1 y 2. Respectivamente, la rarefacción usando estos números indican las estimaciones de riqueza total de especies (Orden 0), diversidad verdadera de las comunes (Orden 1) y diversidad verdadera de las dominantes (Orden 2) (Chao *et al.* 2014).

Se hizo un análisis de similitud de la comunidades usando la distancia Bray-Curtis, que se basa en la identidad y la abundancia de las especies encontradas en cada una de las parcelas. Este índice luego se utilizó para hacer un análisis de conglomerados en el que se usó "Ward" como método de ligaje.

Finalmente se confeccionó un cuadro de recomendaciones que podría ser utilizado en proyectos de restauración de ecosistemas ribereños. En este se trató de clasificar las especies en un rango de 1 a 4 de acuerdo con su potencial para restaurar este tipo de hábitat. Esto estará basado en la especificidad de la especie al hábitat y a la abundancia. Tomándose como especies con prioridad 1: Identificadas solo en ecosistema ribereño/ 2: Identificadas en ambos ecosistemas pero con mayor abundancia, frecuencia, dominancia e IVI en ribereños/ 3: Identificadas en ambos/ 4: Identificadas solo en bosques no ribereños.

RESULTADOS

Se registró un total de 1003 árboles en los tres sitios muestreados, R. Volcán, Q. Fría y Q. Dibujada (6.1.1.1.1.a.Sección 6.1.Anexo 6.2.Cuadro 1, Anexo 1). El promedio de individuos por parcela fue de 33 árboles (rango 20-58). El sitio con más registros fue río Volcán, mientras que la quebrada Dibujada registró el menor número de árboles.

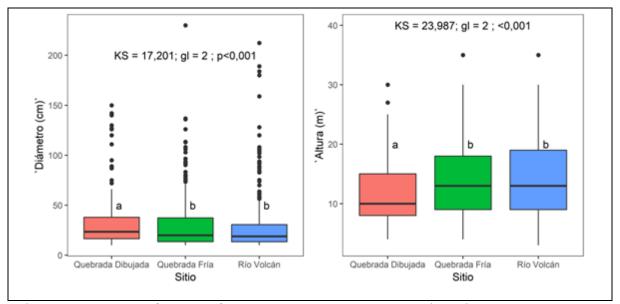
Cuadro 1. Resumen por nivel taxonómico sobre los registros obtenidos en las tres subcuencas del río Grande de Térraba, río Volcán, quebradas Dibujada y Fría, 2017.

SITIOS	Individuos	Familias	Géneros	Especies
Río Volcán	382	33	74	93
Quebrada Fría	325	32	59	81
Quebrada Dibujada	296	27	47	51
Registros totales	1003	44	105	148

La familia de mayor representación fue Fabaceae, además de Moraceae y Euphorbiaceae. El género de mayor riqueza fue *Casearia*, y *Castilla el más abundante*, sin embargo *Trichilia* apareció en más parcelas (Cuadro 1).

Se registraron 148 especies, las de mayor abundancia fueron el hule (*Castilla tunu*) y el colpachí (*Croton schiedeanus*). Con menor representación otras especies como cabello de Ángel o caliandra (*Calliandra magdalenae*), palma real (*Attalea rostrata*), yayo (*Oxandra venezuelana*), espavel (*Anacardium excelsum*), naranjito (*Swartzia ochnacea*), cedro maría (*Calophyllum brasiliense*), baco (*Brosimun utile*) y carbonero (*Lindackeria laurina*). El 80% de las especies registran un número inferior a tres árboles, entre ellas especies con estados poblacionales críticos como el ajo (*Caryocar costarricense*), con endemismo como el chaperno (*Lonchocarpus costaricensis*) o exóticas como la caña india (*Dracaena fragans*) (Anexo 1).

El hule (*Castilla tunu*) fue la especie de mayor frecuencia, luego el garrapatillo (*Hirtella americana*), el cedro maría (*Calophyllum brasiliense*) y el colpachí (*Croton schiedeanus*) ocurriendo en 14, 13 y 12 parcelas respectivamente. El espavel (*Anacardium excelsum*), fue de considerable frecuencia, ocurriendo en 11 unidades de muestreo, así también con ocurrencia en 10 o menos resultaron las especies restantes, representando el 96%. Algunas de este grupo son carbonero (*Lindackeria laurina*), garrapatillo (*Heisteria concinna*), palma real o corozo (*Attalea rostrata*), ojoche (*Brosimum alicastrum*), cabello de ángel (*Calliandra magdalenae*), botoncillo (*Chrysochlamys glauca*), guaba (*Inga punctata*), guatuzo (*Mabea occidentalis*), guácimo colorado (*Luehea semannii*), jobo negro (*Spondias radlkoferi*), y fosforillo (*Trichilia pleeana*), entre las de mayor ocurrencia (Cuadro 2, Anexo 1).


Las especies de mayor dominancia fueron el espavel (*Anacardium excelsum*), el ojoche (*Brosimum alicastrum*) y el hule (*Castilla tunu*). Entre estas de mayor valor de importancia (IVI), el espavel, con un IVI de 22, representando el 7% de los individuos (Cuadro 2, Anexo 1).

Cuadro 2. Especies de mayor dominancia y valor de importancia (IVI) registradas en tres subcuencas del río Grande de Térraba, río Volcán, quebradas Dibujada y Fría, 2017.

Nombre científico	Nombre Común	Abundancia	Frecuencia	Dominancia	IVI
Anacardium excelsum	Espavel	28	11	21,42	22,22
Castilla tunu	Hule	62	14	7,93	15,25
Brosimum alicastrum	Ojoche	12	9	11,47	12,19
Luehea seemannii	Guácimo colorado	21	7	6,24	8,47
Attalea rostrata	Corozo	36	9	3,90	8,45
Croton schiedeanus	Colpachí	51	12	0,89	8,08
Brosimum utile	Baco	23	5	5,82	7,95
Hieronyma alchorneoides	Pilón	18	6	4,85	6,86
Calophyllum brasiliense	Cedro María	24	12	2,58	6,75

Nombre científico	Nombre Común	Abundancia	Frecuencia	Dominancia	IVI
Oxandra venezuelana	Yayo	32	7	2,47	6,51
Calliandra magdalenae	Cabello de ángel	37	9	1,00	6,20
Jacaranda caucana	Búho	22	9	1,76	5,32
Swartzia ochnacea	Naranjito	28	11	0,55	5,32
Ficus insipida	Higuerón	6	6	4,39	5,29
Schefflera morototoni	Pavillo	20	9	1,68	5,06

Las especies del Río Volcán presentaron un diámetro promedio de 28,4 cm, menor que el de quebrada Dibujada aunque similar al de quebrada Fría (KS=17,201; gl=2; p<0,001). En lo que respecta a la altura, los árboles del Río Volcán presentaron un promedio de 14,6 m, significativamente mayor que la registrada en Quebrada Dibujada aunque no diferente a la de Quebrada Fría (KS=23,987; gl=2; p<0,001) (Figura 6).

Figura 6. Distribución del diámetro a la altura del pecho (DAP) y de altura de los árboles registrados en las tres subcuencas estudiadas del río Grande de Térraba, 2017.

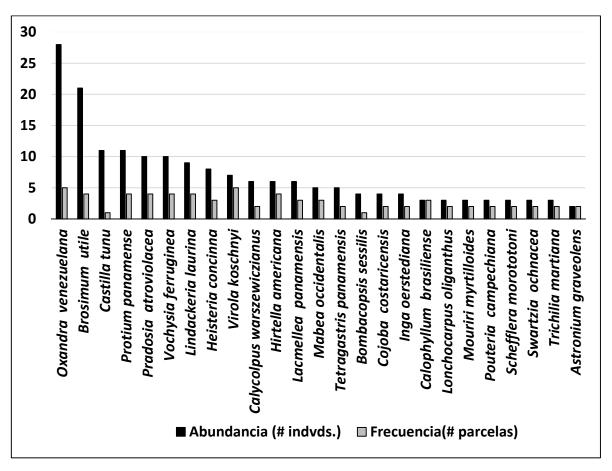
1 Río Volcán

En río Volcán se registraron 382 árboles. Hubo un promedio de 38 individuos por unidad de muestreo, encontrándose parcelas con un mínimo de 20 árboles y otras con 58 individuos (Cuadro 1).

Se identificaron 32 familias, 6 de ellas encontradas solo en este sitio, con respecto a los demás sitios (Caryocaraceae, Myrtaceae, Olacaceae, Polygonaceae, Siparunaceae y Solanaceae) (Cuadro 1). La familia de mayor riqueza fue Fabaceae con 15 especies, sin embargo la más abundante fue Moraceae con 52 individuos. Estas familias también fueron las de mayor frecuencia, presentes en 10 parcelas, mientras que Chrysobalanaceae y Euphorbiaceae ocurrieron en 9, entre las de mayor ocurrencia.

Los géneros identificados fueron 74, 28 de estos fueron registrados solo en este sitio (Cuadro 1). Algunos de ellos son *Pradosia* (de mayor abundancia), *Lacmellea, Bombacopsis, Calycolpus y Coccoloba*. El género con mayor número de especies fue *Casearia*, luego *Brosimum, Inga, Lonchocarpus, Nectandra, Ocotea y Trichilia* con 4 y 3 individuos. Los de mayor abundancia resultaron ser *Brosimum* y *Oxandra* (31 y 28 individuos respectivamente). Finalmente se detectaron con mayor frecuencia *Brosimum, Mabea, Trichilia* e *Hirtella*.

Se registraron 94 especies, un promedio de 21 por unidad de muestreo (Cuadro 1.). Hubo 43 especies registradas solo en este sitio, algunas son el níspero o sapotillo (*Pradosia atroviolacea*), el lagarto negro (*Lacmellea panamensis*), el lorito de montaña (*Cojoba costarricensis*), el guayabo negro (*Calycolpus warszewiczianus*) y el yuco (*Bombacopsis sessilis*), entre las de mayor abundancia.


Las especies de mayor abundancia en el sitio fueron el baco (*Brosimum utile*), el guatuzo (*Mabea occidentalis*) y el yayo (*Oxandra venezuelana*) registrando de 21 a 28 individuos respectivamente. Las de mayor frecuencia fueron el guatuzo (*Mabea occidentalis*), los garrapatillos (*Heisteria concinna*, *Hirtella americana*), el canfín

(*Protium panamense*) y el botoncillo (*Chrysochlamys glauca*) presentes en la mitad de las parcelas muestreadas.

1.1 Bosque no ribereño.

El bosque no ribereño registró 231 individuos y una riqueza de 70 especies. El yayo (*Oxandra venezuelana*) y el baco (*Brosimum utile*) fueron las especies de mayor abundancia (28 y 21 individuos). Estas especies ocurren con alta frecuencia en este ecosistema, presentándose en 5 y 4 parcelas. También hubo otras especies abundantes como el hule (*Castilla tunu*), con 11 individuos, sin embargo presente solo en una de las parcelas muestreadas del bosque no ribereño (Figura 7, Anexo 2).

Con igual abundancia resultó el canfín (*Protium panamense*) solo que ocurre con mayor frecuencia (en 4 parcelas) al igual que el níspero zapote (*Pradosia atroviolacea*), el mayo colorado (*Vochysia ferruginea*) y el carbonero (*Lindackeria laurina*), mientras que otra especie como el árbol fruta dorada (*Virola koschnyi*) ocurre en las 5 parcelas muestreadas pero presentó solo 7 individuos (Figura 7).

Figura 7. Especies de mayor abundancia y frecuencia registradas en bosque no ribereño del río Volcán, subcuenca del río Grande de Térraba, 2017.

De las especies registradas en el bosque no ribereño 35 ocurren solo en este ecosistema, es decir no fueron registradas en el bosque ribereño del sitio río Volcán. Por el contrario hubo 32 especies que representan el 46% de la riqueza del ecosistema no ribereño del sitio que fueron registradas en el bosque ribereño del sitio también (Cuadro 3).

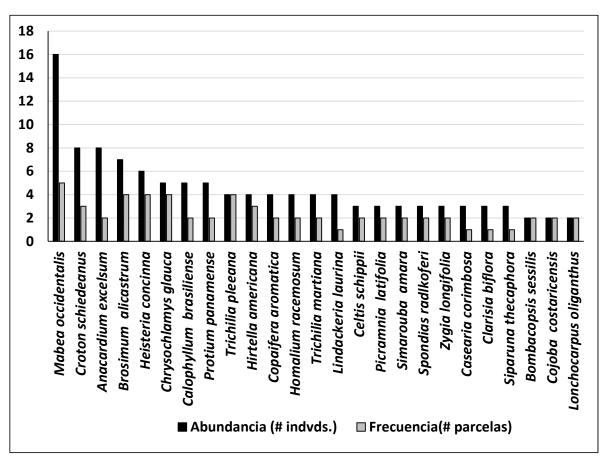
Cuadro 3. Especies registradas en el bosque no ribereño que también ocurrieron en el ecosistema ribereño de río Volcán, subcuenca del río Grande de Térraba, 2017.

Especie	Nombre común	Abundancia
Castilla tunu	Hule	11
Protium panamense	Canfín	11
Pradosia atroviolacea	Nisperillo	10
Lindackeria laurina	Carbonero	9
Heisteria concinna	Garrapatillo	8
Hirtella americana	Garrapatillo	6
Lacmellea panamensis	Lagarto negro	6
Mabea occidentalis	Guatuzo	5
Bombacopsis sessilis	Yuco	4
Cojoba costaricensis	Lorito de montaña	4
Inga oerstediana	Guaba	4
Calophyllum brasiliense	Cedro María	3
Lonchocarpus oliganthus	Chaperno	3
Mouriri myrtilloides	Guayabillo	3
Swartzia ochnacea	Naranjito	3
Trichilia martiana	Manteco	3
Chrysochlamys glauca	Botoncillo	2
Clarisia biflora	Ojoche negro	2
Inga punctata	Guaba	2
Simarouba amara	Aceituno	2
Brosimum alicastrum	Ojoche	1
Brosimum costaricensis	Ojoche	1
Casearia corimbosa	Garrapatillo	1
Cestrum racemosum	Zorrillo	1
Chaunochiton kappleri	Corocito	1

Especie	Nombre común	Abundancia
Croton schiedeanus	Colpachí	1
Hirtella racemosa	Garrapatillo	1
Hura crepitans	Jabillo	1
Leicontea amazonica	Costilla de danto	1
Picramnia latifolia	Coralillo	1
Stemmadenia donnellsmithii	Guijarro	1
Trichilia hirta	Mata piojo	1

La especie de mayor dominancia fue el baco. Al igual que fue la de mayor índice de valor de importancia (IVI) en este ecosistema con un valor de 34,8 representando un 11,6 % del total del IVI, seguida por el yayo con un valor de 22,5 para un porcentaje de 7,5 % (Cuadro 4).

Otras especies con menor valor de importancia ecológica fueron el ajo (*Caryocar costaricense*), hule (*Castilla tunu*), mayo colorado (*Vochysia ferruginea*), ojoche (*Brosimum alicastrum*) y el canfín (*Protium panamense*) con valores de 17,0; 13,0; 11,7; 11,5 y 10,1 respectivamente (Cuadro 4). Las restantes 63 especies poseen valores del IVI inferiores a 10,0 con porcentajes del IVI muy bajos, 0,4-3,0 % (Anexo 2).


Cuadro 4. Especies de mayor dominancia y valor de importancia (IVI) registradas en el bosque no ribereño del río Volcán, subcuenca del río Grande de Térraba, 2017.

Especies	Nombre común	Abundancia	Frecuencia	Dominancia	IVI
Brosimum utile	Baco	21	4	5,79	34,79
Oxandra venezuelana	Yayo	28	5	1,61	22,49
Caryocar costaricense	Ajo	2	2	3,74	16,97
Castilla tunu	Hule	11	1	1,94	13,11
Vochysia ferruginea	Mayo colorado	10	4	1,06	11,75
Brosimum alicastrum	Ojoche	1	1	2,66	11,54

Protium panamense	Canfín	11	4	0,53	10,15
Pradosia atroviolacea	Nisperillo	10	4	0,38	9,14
Lindackeria laurina	Carbonero	9	4	0,23	8,11
Virola koschnyi	Fruta dorada	7	5	0,11	7,61
Heisteria concinna	Garrapatillo	8	3	0,27	7,00
Tetragastris panamensis	Canfín	5	2	0,80	6,93
Hirtella americana	Garrapatillo	6	4	0,08	6,25
Brosimum costaricensis	Ojoche	1	1	1,13	5,64
Lacmellea panamensis	Lagarto negro	6	3	0,12	5,57

1.2 Bosque ribereño.

Se registraron 151 individuos y 56 especies. La especie que presentó mayor abundancia fue el guatuzo (*Mabea occidentalis*) con 16 individuos, misma con mayor frecuencia, se presentó en todas las parcelas de estos ecosistemas. Otras especies como el colpachí (*Croton schiedeanus*) y el espavel (*Anacardium excelsum*) registraron 8 individuos pero con una frecuencia más baja, 3 y 2 parcelas, mientras que el ojoche (*Brosimum alicastrum*) y el garrapatillo (*Heisteria concinna*) estuvieron representados por 7 y 6 individuos y con mayor frecuencia, presentándose en 4 parcelas (Figura 8).

Figura 8. Especies de mayor abundancia y frecuencia registradas en bosque ribereño del río Volcán, subcuenca del río Grande de Térraba, 2017.

En este ecosistema ribereño las especies que se encontraron inmediatas al cauce (0-1 m) del río Volcán fueron ojoche (*Brosimum costaricensis*), papaturro (*Coccoloba venosa*), higuerón (*Ficus costaricana*), garrapatillo (*Hirtella racemosa*), sangrillo (*Pterocarpus hayesii*), candelillo (*Senna spectabilis*) y la guaba (*Inga barbourii*).

Otras especies como aguacatillos (*Nectandra sp.*), el cedro maría (*Calophyllum brasiliense*), jinocuabe (*Bursera simaruba*), zota caballo (*Zygia longifolia*), zorrillo (*Cestrum racemosum*), chaperno (*Lonchocarpus costaricensis*), nisperillo (*Pradosia atroviolacea*) y el lagartillo (*Zhantoxylum riedelianum*) se encontraron también dentro de una zona de inundación del río de 1-5 m.

De la riqueza registrada en el ecosistema ribereño, el 43 % (24 especies) no se registraron en el bosque no ribereño del sitio y presentaron abundancias bajas, 1-8 individuos. De estas últimas, 18 especies aparecen solo en ecosistemas ribereños en los demás sitios estudiados, siendo camíbar y caracolillo los árboles de mayor abundancia con 4 individuos (Cuadro 5, especies con *).

Cuadro 5. Registros obtenidos solo en bosque ribereño del sitio río Volcán, subcuenca del río Grande de Térraba, 2017.

Especie	Nombre común	Abundancia
Anacardium excelsum	Espavel	8
Copaifera aromatica*	Camíbar	4
Homalium racemosum*	Caracolillo	4
Trichilia pleeana	Fosforillo	4
Celtis schippii*	Algodonero	3
Siparuna thecaphora*	Limoncillo, pasmo	3
Spondias radlkoferi	Jobo	3
Zygia longifolia*	Zota caballo	3
Ceiba pentandra	Ceiba	2
Nectandra sp2*.	Aguacatillo	2
Apeiba tibourbou	Peine de mico	1
Bursera simaruba*	Jinocuabe	1
Coccoloba venosa*	Papaturro	1
Ficus costaricana*	Higuerón	1
Hymenaea courbaril*	Guapinol	1
Inga barbourii*	Guaba	1
Lonchocarpus costaricensis*	Chaperno	1
Nectandra sp3.*	Aguacatillo	1
Ocotea atirrensis	Aguacatillo	1

Especie	Nombre común	Abundancia
Pterocarpus hayesii*	Sangrillo	1
Senna spectabilis*	Candelillo	1
Stryphnodendron microstachyum*	Vainillo	1
Tocoyena pittieri*	Aguacate de montaña	1
Zhantoxylum riedelianum	Lagartillo	1

^(*) Encontradas solo en bosque ribereño a nivel de todo el estudio.

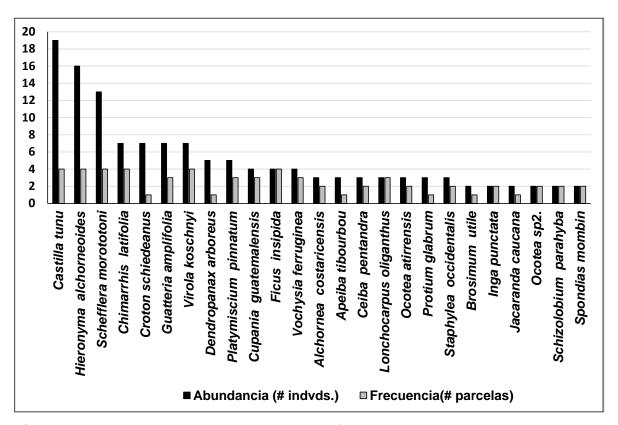
La especie que presentó mayor dominancia fue el ojoche (*Brosimum alicastrum*), misma que ostentó el mayor valor de importancia 44,4, representando un 14,8 % del total del IVI. La segunda especie en valor de importancia fue el espavel (*A. excelsum*) (24,8) para un porcentaje de 8,3 %, las demás especies presentan porcentajes inferiores al 4 % (Cuadro 6, Anexo 3).

Cuadro 6. Especies de mayor dominancia y valor de importancia (IVI) registradas en bosque ribereño del río Volcán, subcuenca del río Grande de Térraba, 2017.

Econosias	Nombre	Abundanaia	Eroquonoio	Dominancia	IVI
Especies	común	Abullualicia	riecuencia	Dominancia	171
Brosimum alicastrum	Ojoche	7	4	7,3	44,4
Mabea occidentalis	Guatuzo	16	5	0,9	20,4
Anacardium excelsum	Espavel	8	2	1,8	16,3
Homalium racemosum	Caracolillo	4	2	1,4	11,4
Stryphnodendron microstachyum	Vainillo	1	1	2,0	11,3
Heisteria concinna	Garrapatillo	6	4	0,3	9,7
Croton schiedeanus	Colpachí	8	3	0,2	9,3
Copaifera aromatica	Camíbar	4	2	0,8	8,7
Chrysochlamys glauca	Botoncillo	5	4	0,1	8,2
Trichilia pleeana	Fosforillo	4	4	0,1	7,4
Calophyllum brasiliense	Cedro María	5	2	0,3	6,9
Hirtella americana	Garrapatillo	4	3	0,1	6,5
Protium panamense	Canfín	5	2	0,2	6,4
Spondias radlkoferi	Jobo negro	3	2	0,4	6,0
Zygia longifolia	Zota caballo	3	2	0,3	5,8

2 Quebrada Fría.

En el sitio quebrada Fría se registraron 325 árboles con un promedio por parcela de 33 individuos, dentro de un rango de 20-43 árboles (Cuadro 1).


Fueron identificadas 32 familias, de estas Boraginaceae, Combretaceae, Putranjivaceae y Staphyleaceae solo se registraron en el sitio. La familia de mayor riqueza fue Fabaceae con 9 especies entre otras como Euphorbiaceae, Malvaceae y Moraceae con 7 especies, mismas de mayor abundancia.

Se identificaron 59 géneros, de estos, 13 solo se encontraron en este sitio. Los de mayor riqueza fueron *Casearia* con 5 especies así como *Inga y Protium* registraron 4 especies. De acuerdo a la frecuencia *Castilla* se presentó en la mayoría de las parcelas (9), además de *Inga* y *Ocotea* presentes en 7.

Se registraron 81 especies, donde el hule (*Castilla tunu*) fue la más abundante con 45 individuos seguido del colpachí (*Croton schiedeanus*) con 38 registros, mientras que el resto tuvo menos de 17 individuos. De esta riqueza encontrada hubo 31 especies que solo fueron registradas en este sitio, entre las de mayor abundancia se puede mencionar el yema de huevo (*Chimarrhis latifolia*) con 10 individuos, el cachimbo o quira (*Platimiscium pinnatum*) con 7 y el higuerón (*Ficus insipida*) con 6, las restantes con menos de 4 individuos.

2.1 Bosque no ribereño.

Se identificaron 159 individuos de 51 especies. Las más abundantes fueron el hule (*Castilla tunu*), el pilón o zapatero (*Hieronyma alchorneoides*) y el pavillo (*Schefflera morototoni*) con 19, 16 y 13 individuos respectivamente. Estas también presentaron la mayor frecuencia al estar presentes en 4 parcelas, además del yema de huevo (*Chimarrhis latifolia*), el higuerón (*Ficus insipida*) y el fruta dorada (*Virola koschnyi*) (Figura 9).

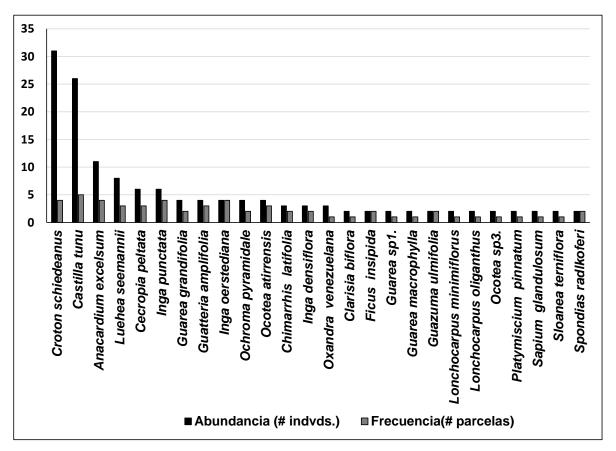
Figura 9. Especies de mayor abundancia y frecuencia registradas en bosque no ribereño de quebrada Fría, subcuenca del río Grande de Térraba, 2017.

De las especies encontradas, el 61 % solo se registraron en este ecosistema no ribereño, esto a nivel de sitio (31 especies), entre ellas el pilón o zapatero, así como pavillo y fruta dorada. El restante 39 % correspondiente a 20 especies también fueron encontradas en el ecosistema ribereño, de las que el hule (*Castilla tunu*) fue el más abundante con 19 individuos, además del yema de huevo, el colpachí (*Croton schiedeanus*) y el anonillo negro (*Guatteria amplifolia*) (Cuadro 7).

Cuadro 7. Registros en bosque no ribereño que también se encontraron en bosque ribereño del sitio quebrada Fría, subcuenca del río Grande de Térraba, 2017.

Especie	Nombre común	Abundancia
Castilla tunu	Hule	19
Chimarrhis latifolia	Yema de huevo	7
Croton schiedeanus	Colpachí	7
Guatteria amplifolia	Anonillo negro	7
Platymiscium pinnatum	Cachimbo	5
Cupania guatemalensis	Manteco	4
Ficus insipida	Higuerón	4
Ceiba pentandra	Ceiba	3
Lonchocarpus oliganthus	Chaperno	3
Ocotea atirrensis	Aguacatillo	3
Inga punctata	Guaba	2
Spondias mombin	Jobo	2
Spondias radlkoferi	Jobo	2
Trichilia martiana	Manteco	2
Clarisia biflora	Ojoche negro	1
Ficus tonduzii	Higuerón	1
Guazuma ulmifolia	Guácimo	1
Oxandra venezuelana	Yayo	1
Sapium glandulosum	Yos	1
Virola surinamensis	Fruta dorada	1

La especie que presentó el mayor valor de importancia fue el hule (*C. tunu*) (34,4), representando un 11,5 % del total. La segunda en valor de importancia fue el pilón o zapatero (*H. alchorneoides*) (33,3) para un porcentaje de 11,1 %, y el higuerón (*F. insipida*) con un IVI de 25,5 representando el 8,5 % de los individuos.


Las demás presentan porcentajes inferiores al 6 %. De las especies registradas en este ecosistema y que también están en el ecosistema ribereño, el hule fue la que presentó el valor más alto del IVI mientras que las restantes presentan valores inferiores a 11 y con porcentajes menores al 4 % (Cuadro 8, 6.1.1.1.1.a.Sección 6.1.Anexo 4).

Cuadro 8. Especies de mayor dominancia y valor de importancia (IVI) registradas en bosque no ribereño de quebrada Fría, subcuenca del río Grande de Térraba, 2017.

Ecnosics	Nombre	Abundanaia	Eroquonoio	Dominancia	IVI
Especies	común	Abundancia	riecuencia	Dominancia	IVI
Castilla tunu	Hule	19	4	3,55	34,45
Hieronyma alchorneoides	Pilón	16	4	3,70	33,35
Ficus insipida	Higuerón	4	4	3,65	25,53
Schefflera morototoni	Pavillo	13	4	1,29	19,24
Guatteria amplifolia	Anonillo negro	7	3	0,61	10,92
Virola koschnyi	Fruta dorada	7	4	0,18	9,84
Chimarrhis latifolia	Yema de huevo	7	4	0,14	9,65
Platymiscium pinnatum	Cachimbo	5	3	0,60	9,59
Schizolobium parahyba	Gallinazo	2	2	0,95	8,33
Vochysia ferruginea	Mayo colorado	4	3	0,25	7,21
Cupania guatemalensis	Manteco	4	3	0,20	6,96
Croton schiedeanus	Colpachí	7	1	0,15	6,28
Spondias mombin	Jobo	2	2	0,49	5,99
Lonchocarpus oliganthus	Chaperno	3	3	0,08	5,71
Spondias radlkoferi	Jobo negro	2	1	0,63	5,60

2.2 Bosque ribereño.

Se registraron 166 individuos, el promedio de individuos por parcela fue de 16, con un mínimo de 13 individuos y un máximo de 19 individuos. En este ecosistema fueron identificadas 50 especies, la más abundante resultó ser el colpachí (*Croton schiedeanus*) con 31 individuos. El hule (*Castilla tunu*) también fue abundante en estos ecosistemas presentando 26 individuos y con menor representación el espavel (*Anacardium excelsum*) con 11 individuos, las demás especies con menos representación. La especie de mayor frecuencia fue el hule (*Castilla tunu*), ocurriendo en las 5 parcelas, mientras que *A. excelsum, C. schiedeanus, Inga oerstediana* e *I. punctata* se presentaron en 4 parcelas (Figura 10.).

Figura 10. Especies de mayor abundancia y frecuencia registradas en bosque ribereño de quebrada Fría, subcuenca del río Grande de Térraba, 2017.

Las especies que se encontraron inmediatas al cauce (0-1m) de la quebrada Fría fueron la ceiba (*Ceiba pentandra*), guaba (*Inga sp.*), ortiga (*Myriocarpa longipes*), magnolia (*Cosmibuena grandiflora*), higuerón (*Ficus tonduzii*), coralillo (*Picramnia latifolia*) y el árbol fruta dorada (*Virola surinamensis*). Otras especies como el anonillo (*Annona papilionella*), guijarro (*Stemmadenia donnellsmithii*), cacao de montaña (*Theobroma angustifolium*), manteco (*Trichilia martiana*), garrapatillo (*Heisteria concinna*), el sapote (*Pouteria amygdalicarpa*), clavillo (*Adelia triloba*), chaperno (*Lonchocarpus minimiflorus*) y el yos (*Sapium glandulosum*) se encontraron también dentro de la zona de inundación de esta quebrada al momento del muestreo (1-5 m).

De la riqueza registrada en el ecosistema ribereño de quebrada Fría el 60% (30 especies) no aparecieron en el ecosistema no ribereño del sitio. De estas 30 especies las de mayor abundancia son el espavel (*A. excelsum*) y el guácimo colorado (*L. seemannii*) con 11 y 8 individuos. Al comparar estas especies con los registros de los demás sitios se encontró que 15 de ellas aparecen solo en ecosistemas ribereños, entre las más abundantes están el cedrillo (*Guarea grandifolia*) y una especie de guaba (*Inga densiflora*), estas especies son poco abundantes y presentan muy baja frecuencia (Cuadro 9, Figura 10).

En el ecosistema ribereño de quebrada Fría la especie que presentó el mayor valor de importancia fue el espavel (*Anacardium excelsum*) (51.9 %), representando un 17.3 % del total del IVI. La segunda especie en valor de importancia fue el hule (*C. tunu*) (29.2) para un porcentaje de 9.7 %, luego el colpachí (*C. shiedeanus*) y el guácimo colorado (*L. seemannii*) con valores del IVI de 25.7 y 21.5 para porcentajes de 8.6 y 7.2. Las demás especies presentan valores del IVI menores a 10 y porcentajes inferiores al 4% (Cuadro 10, 6.1.1.1.a.Sección 6.1.Anexo 5).

Cuadro 9. Registros obtenidos solo en el bosque ribereño de quebrada Fría, subcuenca del río Grande de Térraba, 2017.

Especie	Nombre común	Abundancia
Anacardium excelsum	Espavel	11
Luehea seemannii	Guácimo colorado	8
Cecropia peltata	Guarumo	6
Guarea grandifolia*	Cedrillo	4
Inga oerstediana	Guaba	4
Ochroma pyramidale	Balsa	4
Inga densiflora*	Guaba	3
Guarea sp*	Cocora	2
Guarea macrophylla*	Cocora	2
Lonchocarpus minimiflorus	Chaperno	2
Ocotea sp 3*	Aguacatillo	2
Sloanea terniflora*	Pica	2
Theobroma cacao*	Cacao	2
Adelia triloba*	Clavillo	1
Casearia commersoniana*	Garrapatillo	1
Chrysochlamys glauca	Botoncillo	1
Cordia lucidula*	Laurel	1
Cosmibuena grandiflora	Magnolia	1
Drypetes standleyi*	Madroño	1
Heisteria concinna	Garrapatillo	1
Inga sp*	Guaba	1
Lonchocarpus heptaphyllus*	Chaperno	1
Mabea occidentalis	Guatuzo	1
Myriocarpa longipes	Ortiga	1
Picramnia latifolia	Coralillo	1
Pouteria amygdalicarpa*	Sapote	1

Especie	Nombre común	Abundancia
Protium panamense	Canfín	1
Annona papilionella	Anonillo	1
Stemmadenia donnellsmithii	Guijarro	1
Theobroma angustifolium*	Cacao de montaña	1

^(*)Encontradas solo en bosque ribereño a nivel de todo el estudio.

Cuadro 10. Especies de mayor dominancia y valor de importancia (IVI) registradas en bosque ribereño de quebrada Fría, subcuenca del río Grande de Térraba, 2017.

Especies	Nombre común	Abundancia	Frecuencia	Dominancia	IVI
Anacardium excelsum	Espavel	11	4	9,37	51,90
Castilla tunu	Hule	26	5	1,70	29,16
Croton schiedeanus	Colpachí	31	4	0,48	25,69
Luehea seemannii	Guácimo colorado	8	3	3,01	21,49
Inga oerstediana	Guaba	6	4	0,12	9,08
Spondias radlkoferi	Jobo negro	2	2	1,16	8,67
Inga sp	Guaba	4	4	0,28	8,56
Cecropia peltata	Guarumo	6	3	0,11	7,78
Ficus insipida	Higuerón	2	2	0,75	6,88
Guatteria amplifolia	Anonillo negro	4	3	0,08	6,44
Ocotea atirrensis	Aguacatillo	4	3	0,06	6,39
Oxandra venezuelana	Yayo	3	1	0,75	6,26
Guazuma ulmifolia	Guácimo	2	2	0,58	6,16
Ochroma pyramidale	Balsa	4	2	0,26	6,00
Guarea grandifolia	Cedrillo	4	2	0,26	5,98

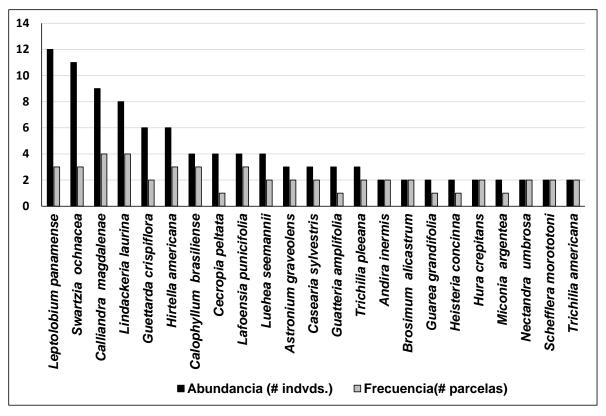
3 Quebrada Dibujada.

En la quebrada Dibujada se encontraron 296 individuos (Cuadro 1). El promedio de árboles por parcela fue de 30 individuos, encontrándose un mínimo de 20 y un máximo de 43 individuos.

En el sitio se identificaron 27 familias, Fabaceae y Meliaceae presentaron la mayor riqueza, 5 especies. La familia Fabaceae presentó la frecuencia y abundancia más alta, ocurriendo en todas las parcelas del sitio con 81 individuos. En las familias identificadas hubo 4 que solo fueron registradas en este sitio, Areacaceae, Lythraceae, Malpighiaceae y Asparagaceae.

Los géneros identificados fueron 47, *Trichilia* fue el de mayor riqueza seguido de *Casearia* (4 y 2 especies respectivamente). Los géneros más abundantes resultaron ser *Calliandra* y *Attalea* con 37 y 36 individuos. Otros géneros como *Swartzia* y *Jacaranda* presentaron abundancias altas (23 y 20 individuos) con respecto a los demás géneros. La frecuencia más alta también es para los primeros géneros mencionados, ocurriendo en 9 de las 10 parcelas del sitio. Hubo 9 géneros presentes solo en este sitio, *Calliandra*, *Attalea* y *Leptolobium*, con más individuos.

Se registraron 51 especies, la más abundante fue *Calliandra magdalenae* con 37 individuos y la palma real o corozo (*Attalea rostrata*) con 36, estas especies fueron las de mayor frecuencia, ocurriendo en 9 parcelas. Otras especies como el naranjito (*Swartzia ochnacea*) y el búho o jacaranda (*Jacaranda caucana*) también son comunes de encontrar en el sitio por su abundancia (23 y 20 individuos) y por su frecuencia en 8 parcelas de 10 entre otras como el cedro maría (*Callophyllum brasiliense*), el guayacán amarillo (*Leptolobium panamense*), el guácimo colorado (*Luehea seemannii*), y el carbonero (*Lindakeria laurina*).


Se identificaron 13 especies en el sitio que no fueron detectadas en los demás sitios. Entre las más abundantes resultaron el cabello de ángel (*Calliandra magdalenae*), el corozo (*Attalea rostrata*), el guayacán amarillo (*Leptolobium panamense*), cascarillo (*Lafoensia punicifolia*) y arenillo o siempre verde (*Andira inermis*) con 37, 36, 14, 6 y 5 individuos respectivamente.

3.1 Bosque no ribereño.

En el bosque no ribereño de la quebrada Dibujada se registraron 144 individuos. El promedio de árboles por parcela fue de 29, con un mínimo de 23 árboles y un máximo de 37.

En el ecosistema no ribereño se registraron 41 especies. Las de mayor representación fueron la palma real (*Attalea rostrata*), el búho o jacaranda (*Jacaranda caucana*), el guayacán amarillo (*Leptolobium panamense*) y el naranjito (*Swartzia ochnacea*) con 15, 14, 12 y 11 individuos.

Estas mismas especies presentaron mayor frecuencia, la palma real y la jacaranda ocurrieron en 4 parcelas, al igual que el carbonero (*Lindackeria laurina*) y el cabello de ángel (*Calliandra magdalenae*). Otras de menor frecuencia fueron el guayacán amarillo, el cedro maría (*Calophyllum brasiliense*), el garrapatillo (*Hirtella americana*), el cascarillo (*Lafoensia punicifolia*) y el naranjito presentes en tres parcelas (Figura 11).

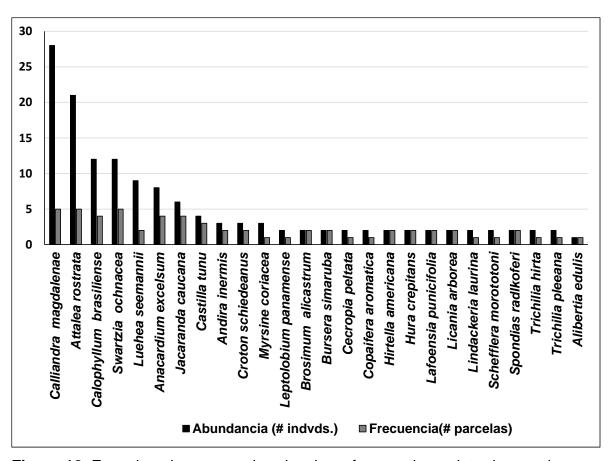
Figura 11. Especies de mayor abundancia y frecuencia registradas en bosque no ribereño de quebrada Dibujada, subcuenca del río Grande de Térraba, 2017.

Se identificaron 11 especies que solo fueron registradas en este ecosistema, entre ellas la salvia de montaña (*Guettarda crispiflora*), con 6 individuos. Hubo también un grupo de 30 especies del ecosistema no ribereño que también se registran en el ecosistema ribereño del sitio como el caso de la palma real o corozo (*Attalea rostrata*), el búho o jacaranda (*Jacaranda caucana*), el guayacán amarillo (*L. panamense*) y el naranjito (*S. ochnaceae*), entre otras (Cuadro 11).

Cuadro 11. Registros obtenidos en bosque no ribereño que también se encontraron en el bosque ribereño de quebrada Dibujada, subcuenca del río Grande de Térraba, 2017.

Especie	Nombre común	Abundancia
Attalea rostrata	Corozo	15
Jacaranda caucana	Búho	14
Leptolobium panamense	Guayacán amarillo	12
Swartzia ochnacea	Naranjito	11
Calliandra magdalenae.	Caliandra	9
Lindackeria laurina	Carbonero	8
Hirtella americana	Garrapatillo	6
Calophyllum brasiliense	Cedro María	4
Cecropia peltata	Guarumo	4
Lafoensia punicifolia	Cascarillo	4
Luehea seemannii	Guácimo colorado	4
Trichilia pleeana	Fosforillo	3
Andira inermis	Arenillo	2
Brosimum alicastrum	Ojoche	2
Heisteria concinna	Garrapatillo	2
Hura crepitans	Jabillo	2
Nectandra umbrosa	Aguacatillo	2
Schefflera morototoni	Pavillo	2
Trichilia americana	Cedrillo	2
Alibertia edulis	Madroño	1
Anacardium excelsum	Espavel	1
Byrsonima crassifolia	Nance	1
Chrysochlamys glauca	Botoncillo	1
Croton schiedeanus	Colpachí	1
Goethalsia meiantha	Guácimo blanco	1

Especie	Nombre común	Abundancia
Licania arborea	Alcornoque	1
Myrsine coriacea	Tucuico	1
Trichilia hirta	Mata piojo	1
Trichilia martiana	Manteco	1
Zuelania guidonea	Cagajón	1


En el ecosistema no ribereño de quebrada Dibujada la palma real o corozo presentó el mayor valor para el índice de valor de importancia, 27,4 representando el 9,1 % de las especies (Cuadro 12). Otras especies también presentaron valores altos del IVI como jacaranda, el guácimo colorado y el guayacán amarillo con los siguientes valores 24,0; 20,1 y 19,4 con porcentajes de 8,0; 6,7 y 6,5 respectivamente, las demás especies presentan porcentajes inferiores al 5 % (Anexo 6).

Cuadro 12. Especies de mayor dominancia y valor de importancia (IVI) registradas en el bosque no ribereño de quebrada Dibujada, subcuenca del río Grande de Térraba, 2017.

Especies	Nombre común	Abundancia	Frecuencia	Dominancia	IVI
Attalea rostrata	Corozo	15	4	1,46	27,44
Jacaranda caucana	Búho	14	4	1,12	24,06
Luehea seemannii	Guácimo colorado	4	2	1,84	20,12
Leptolobium panamense	Guayacán amarillo	12	3	0,88	19,43
Calliandra magdalenae	Cabello de ángel	9	4	0,31	14,11
Swartzia ochnacea	Naranjito	11	3	0,26	13,80
Lindackeria laurina	Carbonero	8	4	0,31	13,44
Ceiba pentandra	Ceiba	1	1	1,25	11,99
Hirtella americana	Garrapatillo	6	3	0,29	10,54
Calophyllum brasiliense	Cedro María	4	3	0,38	9,84
Guettarda crispiflora	Salvia de montaña	6	2	0,25	8,86
Lafoensia punicifolia	Cascarillo	4	3	0,22	8,56
Astronium graveolens	Ron	3	2	0,43	8,23
Anacardium excelsum	Espavel	1	1	0,71	7,70
Brosimum alicastrum	Ojoche	2	2	0,28	6,34

3.2 Bosque ribereño.

En el bosque ribereño de quebrada Dibujada se registraron 152 individuos (en promedio 15 árboles por parcela) correspondientes a 40 especies. Las especies de mayor abundancia fueron *Calliandra magdalenae* y *Attalea rostrata* con 28 y 21 individuos, ocurriendo en las 5 parcelas muestreadas. Otras especies con menor abundancia pero igual frecuencia fueron *Calophyllum brasiliense* y *Swartzia ochnaceae* (Figura 12).

Figura 12. Especies de mayor abundancia y frecuencia registradas en bosque ribereño de quebrada Dibujada, subcuenca del río Grande de Térraba, 2017.

Las especies ubicadas inmediatas al cauce (0-1 m) de la quebrada Dibujada fueron el arenillo o siempre verde (*Andira inermis*), cacho de venado (*Dendropanax arboreus*), pica pica (*Sloanea terniflora*), jobo de montaña (*Spondias radlkoferi*) y el alcornoque (*Licania arborea*). Hubo otras especies en el sitio como el algodonero (*Celtis schippii*), guácimo blanco (*Goethalsia meiantha*), jabillo (*Hura crepitans*), madroño (*Alibertia edulis*), higuerón (*Ficus sp.*), guácimo ternero (*Guazuma ulmifolia*) y el cagajón o anono (*Zuelania guidonea*) que se encontraron también dentro de la zona de inundación de esta quebrada al momento del muestreo (1-5 m).

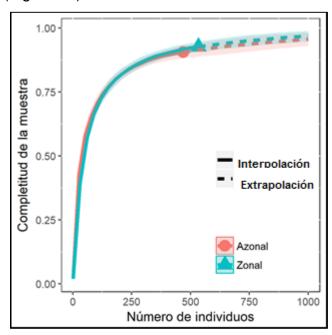
Hubo 10 especies que se registraron solo en este ecosistema, de las que *Castilla tunu* con 4 individuos fue la de mayor abundancia. Se identificaron también 3 especies de este grupo (registrado solo en el ecosistema ribereño del sitio) con la misma condición en los demás sitios, estas son el jinocuabe (*Bursera simaruba*), el algodonero (*Celtis schippii*) y el camíbar (*Copaifera aromatica*), todas con abundancias bajas, 1-2 individuos (Cuadro 13).

Cuadro 13. Registros obtenidos solo en el bosque ribereño de quebrada Dibujada, subcuenca del río Grande de Térraba, 2017.

Especies	Nombre común	Abundancia
Bursera simaruba*	Jinocuabe	2
Castilla tunu	Hule	4
Celtis schippii*	Algodonero	1
Copaifera aromatica*	Camíbar	2
Dendropanax arboreus	Cacho de venado	1
Dracaena fragans	Caña india	1
Ficus sp1.	Higuerón	1
Guazuma ulmifolia	Guácimo	1
Sloanea terniflora	Pica	1
Spondias radlkoferi	Jobo	2

^(*)Encontradas solo en bosque ribereño a nivel de todo el estudio.

En el ecosistema ribereño de quebrada Dibujada el espavel resultó con el índice de valor de importancia más alto, 55,3 representando el 18,4 % de los individuos. También presentaron valores altos del IVI la palma real, *Calliandra* y el cedro maría con los siguientes valores 32,1; 28,5 y 20,9 con porcentajes de 10,7; 9,5 y 7,0 respectivamente (Cuadro 4, Anexo 7).


Cuadro 14. Especies de mayor dominancia y valor de importancia (IVI) registradas en el bosque ribereño de quebrada Dibujada, subcuenca del río Grande de Térraba, 2017.

Especies	Nombre común	Abundancia	Frecuencia	Dominancia	IVI
Anacardium excelsum	Espavel	8	4	9,52	55,29
Attalea rostrata	Corozo	21	5	2,44	32,11
Calliandra magdalenae	Cabello de ángel	28	5	0,69	28,49
Calophyllum brasiliense	Cedro María	12	4	1,60	20,88
Swartzia ochnacea	Naranjito	12	5	0,22	15,76
Luehea seemannii	Guácimo colorado	9	2	1,39	15,15
Jacaranda caucana	Búho	6	4	0,59	12,17
Brosimum alicastrum	Ojoche	2	2	1,20	9,65
Castilla tunu	Hule	4	3	0,55	9,33
Spondias radlkoferi	Jobo negro	2	2	0,38	5,81
Licania arborea	Alcornoque	2	2	0,30	5,46
Bursera simaruba	Jinocuabe	2	2	0,27	5,31
Croton schiedeanus	Colpachí	3	2	0,07	5,06
Andira inermis	Arenillo	3	2	0,07	5,06
Lafoensia punicifolia	Cascarillo	2	2	0,18	4,90

ANALISIS INTEGRAL ENTRE ESPECIES DE BOSQUE RIBEREÑO Y NO RIBEREÑO.

1 Rarefacción.

Según el análisis de completitud de la muestra, los árboles muestreados describen el 90 % de las comunidades de los ecosistemas ribereños (azonal) como no ribereños (zonal). (Figura 13).

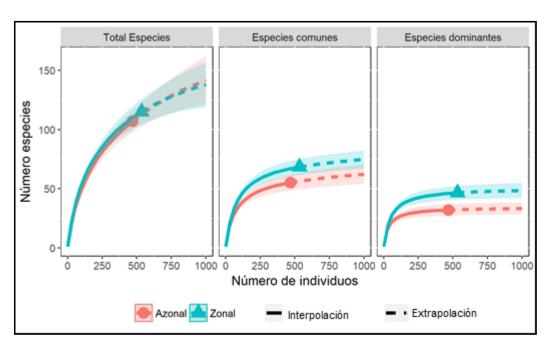


Figura 13. Análisis para la evaluación de la completitud de la muestra mediante curvas de rarefacción de ecosistemas ribereños (azonal) y no ribereños (zonal) basadas en el número de individuos registradas en tres subcuencas del río Grande de Térraba, 2017.

Según las curvas de rarefacción usando los números de Hill, no se logró describir toda la riqueza de especies de las comunidades puesto que aparentemente con mayor esfuerzo de muestreo se podrían encontrar hasta más de 150 especies en ambos tipos de bosque (Figura 14). Sin embargo, si se logró describir relativamente bien las especies comunes y dominantes de ambos sitios (números de Hill 1 y 2) (Figura 14). Esto se logró principalmente en los bosques

azonales, acorde con nuestro objetivo de reconocer las especies ribereñas. En la curva de rarefacción para especies comunes, a partir de los individuos observados hay poco aumento de las especies comunes esperadas, tanto en ecosistemas ribereños (azonal) como no ribereños (zonal). En ambos casos, la diversidad de especies comunes es de aproximadamente 60 especies (Figura 14).

Lo mismo sucede con las especies dominantes (número de Hill de orden 2), Al evaluar las especies dominantes en ambos ecosistemas las curvas de rarefacción tienden a su estabilización aún con una muestra menor a la obtenida. En bosques zonales, esta diversidad estimada de especies dominantes es de unas 50 especies, mientras que en bosques azonales, esta diversidad es significativamente menor y se estima en 34 especies (Figura 14).

Figura 14. Curvas de rarefacción del total de especies de árboles, de las especies comunes y de las especies dominantes usando los números de Hill 0,1 y 2 respectivamente, basadas en el número de individuos y especies registradas en bosques ribereños (azonales) y bosques no ribereños (zonal) de tres subcuencas del río Grande de Térraba, 2017.

2 Análisis de Similitud.

El análisis de similitud de la composición de especies entre los bosques ribereños (azonales) y no ribereños (zonales) por sitio demostró que las comunidades se separan principalmente de acuerdo al sitio de estudio. Aunque se obtuvo que en general la similitud es baja, tanto entre sitios, como entre tipos de ecosistemas, en todos los sitios las comunidades azonales y zonales fueron más similares entre sí que con cualquiera de otro sitio (Figura 15).

Sin embargo, al analizar las parcelas separadamente dentro de cada sitio, se encontró que tanto las zonales como las azonales tienden a agruparse más entre sí que con las del ecosistema diferente, principalmente en Río Volcán y Quebrada Fría. Por el contrario, en Quebrada Dibujada no se encontró una buena separación entre los ecosistemas de acuerdo a la composición de la comunidad (Figura 15).

3 Especies encontradas sólo en bosque ribereño.

Hubo 33 especies de árboles que sólo fueron registradas en el bosque ribereño. Registraron abundancias bajas, 6 individuos para el camíbar (*Copaifera aromatica*) la más abundante de este grupo, seguida del algodonero (*Celtis schippii*) y el caracolillo (*Homalium racemosum*) con 4 individuos, entre las de mayor abundancia (Cuadro 15).

La frecuencia resultó baja también, hay solo una especie con presencia en tres parcelas ribereñas (la frecuencia más alta), el algodonero (*Celtis schippii*). Luego con presencia en 2 parcelas (*Bursera somaruba, Copaifera aromatica, Homalium racemosum, Inga densiflora, Sloanea terniflora y Zygia longifolia*). Las 26 especies restantes, un 79% ocurrieron en solo una parcela (Cuadro 15).

El índice de valor de importancia de estas especies resultó alto. El vainillo de montaña (*Stryphnodendron microstachyum*), de gran tamaño y localizado a orillas de la quebrada Dibujada fue la de mayor dominancia y registró el IVI de mayor valor 30,3; sin embargo solo fue encontrado un individuo. El caracolillo (*Homalium*

racemosum) y el camíbar (*Copaifera camibar*) registran valores también altos, 29,7 y 29,3 con respecto a especies con valores del IVI inferiores a 18 como el algodonero (*Celtis schippii*), zota caballo (*Zygia longifolia*), jinocuabe (*Bursera simaruba*), guaba (*Inga densiflora*), guapinol (*Hymenaea courbaril*) y el pica (*Sloanea terniflora*), el resto, un 73% presentó valores inferiores a 10 (Cuadro 15).



Figura 15. Análisis de disimilitud de la composición de especies de árboles registrada en bosques ribereños (azonales) y no ribereños (zonales) de tres

subcuencas del río Grande de Térraba, río Volcán, quebrada Fría y quebrada Dibujada, 2017.

Cuadro 15. Especies registradas solo en bosque ribereño de tres subcuencas del río Grande de Térraba, río Volcán, quebrada Fría y quebrada Dibujada, 2017.

Nombre científico	Nombre común	Α	F	D	IVI
Stryphnodendron microstachyum	Vainillo	1	1	1,99	30,32
Homalium racemosum	Caracolillo	4	2	1,37	29,68
Copaifera aromatica	Camíbar	6	2	1,08	29,32
Celtis schippii	Algodonero	4	3	0,23	17,09
Zygia longifolia	Zota caballo	3	2	0,33	14,31
Bursera simaruba	Jinocuabe	3	2	0,30	13,91
Inga densiflora	Guaba	3	2	0,19	12,43
Hymenaea courbaril	Guapinol	1	1	0,56	11,55
Sloanea terniflora	Pica	3	2	0,08	10,97
Siparuna thecaphora	Limoncillo, pasmo	3	1	0,11	8,99
Guarea macrophylla	Cocora	2	1	0,22	8,72
Guarea sp.	Cocora	2	1	0,19	8,33
Nectandra sp 2	Aguacatillo	2	1	0,10	7,13
Ocotea sp.	Aguacatillo	2	1	0,08	6,85
Drypetes standleyi	Madroño	1	1	0,17	6,33
Theobroma cacao	Cacao	2	1	0,03	6,24
Inga sp.	Guaba	1	1	0,13	5,88
Ficus sp.	Higuerón	1	1	0,13	5,79
Pouteria amygdalicarpa	Sapote	1	1	0,10	5,40
Coccoloba venosa	Papaturro	1	1	0,03	4,49
Theobroma angustifolium	Cacao de montaña	1	1	0,03	4,47
Ficus costaricana	Higuerón	1	1	0,02	4,46

Nombre científico	Nombre común	Α	F	D	IVI
Tocoyena pittieri	Aguacate de montaña	1	1	0,02	4,45
Senna spectabilis	Candelillo	1	1	0,02	4,42
Pterocarpus hayesii	Sangrillo	1	1	0,01	4,31
Adelia triloba	Clavillo	1	1	0,01	4,30
Nectandra sp 3	Aguacatillo	1	1	0,01	4,29
Lonchocarpus costaricensis	Chaperno	1	1	0,01	4,28
Casearia commersoniana	Garrapatillo	1	1	0,01	4,27
Cordia lucidula	Laurel	1	1	0,01	4,26
Inga barbourii	Guaba	1	1	0,01	4,26
Lonchocarpus heptaphyllus	Chaperno	1	1	0,01	4,25
Dracaena fragans	Caña india	1	1	0,01	4,25

Simbología: **A**: abundancia, **F**: frecuencia, **D**: dominancia, **IVI**: índice de valor de importancia.

Entre las especies de árboles que solo fueron registradas en el bosque ribereño las que se encontraron dentro de una distancia de 0-5 m de los cauces fueron el papaturro (*Coccoloba venosa*), higuerón (*Ficus sp y Ficus costaricana*), guabas (*Inga sp., I. barbourii*), sangrillo (*Pterocarpus hayesii*), candelillo (*Senna spectabilis*), zota caballo (*Zygia longifolia*), aguacatillos (*Nectandra sp.*), cacao de montaña (*Theobroma angustifolium*), chaperno (*Lonchocarpus costaricensis*) y el sapote (*Pouteria amygdalicarpa*) (Cuadro 16).

Cuadro 16. Especies registradas solo en bosque ribereño y dentro de zonas de inundación de 0-5 m de los cauces de tres subcuencas del río Grande de Térraba, río Volcán, quebrada Fría y quebrada Dibujada, 2017.

Nombre científico	Nombre común	Α	F	D	IVI
Copaifera aromatica	Camíbar	6	2	1,08	29,32
Zygia longifolia	Zota caballo	3	2	0,33	14,31
Nectandra sp 2	Aguacatillo	2	1	0,10	7,13
Inga sp.	Guaba	1	1	0,13	5,88
Ficus sp.	Higuerón	1	1	0,13	5,79
Pouteria amygdalicarpa	Sapote	1	1	0,10	5,40
Coccoloba venosa	Papaturro	1	1	0,03	4,49
Theobroma angustifolium	Cacao de montaña	1	1	0,03	4,47
Ficus costaricana	Higuerón	1	1	0,02	4,46
Senna spectabilis	Candelillo	1	1	0,02	4,42
Pterocarpus hayesii	Sangrillo	1	1	0,01	4,31
Adelia triloba	Clavillo	1	1	0,01	4,30
Lonchocarpus costaricensis	Chaperno	1	1	0,01	4,28
Inga barbourii	Guaba	1	1	0,01	4,26

4 Especies de bosque ribereño que también se encontraron en bosque no ribereño.

Se registraron 74 especies en bosque ribereño que también ocurren en bosque no ribereño. De ellas 31 presentaron mayor abundancia, frecuencia y valor de importancia en el ecosistema ribereño (Cuadro 17).

Algunas presentaron valores de abundancia muy altos en el bosque ribereño en comparación con el no ribereño como el caso del colpachí (*Croton schiedeanus*), caliandra (*Calliandra magdalenae*.), espavel (*Anacardium excelsum*), palma real o corozo (*Attalea rostrata*), cedro maría (*Calophyllum brasiliense*), guácimo colorado (*Luehea seemannii*), ojoche (*Brosimum alicastrum*) y el jobo (*Spondias radlkoferi*), entre otras (Cuadro 17). Hubo otras especies que ocurrieron con mayor frecuencia de aparición (estuvieron en más parcelas) en el bosque ribereño como el espavel, guarumo (*Cecropia peltata*), guaba (*Inga oerstediana*), aguacatillo (*Ocotea atirrencis*), coralillo (*Picramnia latifolia*), jobo de montaña (*Spondias radlkoferi*) y fosforillo (*Trichilia pleeana*) (Cuadro 17).

Por otro lado el índice de valor de importancia (IVI) resultó mucho mayor en el bosque ribereño. El 97% de las especies (72 de 74) que están en ambos ecosistemas presentaron mayor IVI en el ecosistema ribereño, registrándose gran diferencia entre valores para muchas especies como el espavel, el ojoche (*Brosimum alicastrum*), el hule (*Castilla tunu*), croton, el guácimo colorado, la palma real (*Attalea rostrata*), caliandra, entre otras (Cuadro 17)

Cuadro 17. Especies registradas en ecosistemas ribereños y no ribereños, en tres subcuencas del río Grande de Térraba, río Volcán, quebrada Fría y quebrada Dibujada, 2017.

Nombre científico	Ribereño					No ribereño			
Nombre Clentinico	Α	F	D	IVI	Α	F	D	IVI	
Anacardium excelsum*	27	4	20,71	44,9	1	1	0,71	0,71	
Brosimum alicastrum*	9	4	8,53	19,4	3	3	2,94	2,94	
Castilla tunu*	32	5	2,44	15,1	30	4	5,49	5,49	
Croton schiedeanus*	42	5	0,71	14,5	9	3	0,18	0,18	
Luehea seemannii*	17	3	4,40	13,6	4	2	1,84	1,84	
Attalea rostrata*	21	5	2,44	12,4	15	4	1,46	1,46	
Calliandra magdalenae*	28	5	0,69	11,1	9	4	0,31	0,31	
Calophyllum brasiliense*	17	4	1,89	9,8	7	4	0,69	0,69	
Mabea occidentalis*	17	5	0,98	8,9	5	3	0,12	0,12	
Swartzia ochnacea*	14	5	0,24	6,9	14	4	0,30	0,30	
Spondias radlkoferi*	7	3	1,93	6,9	2	1	0,63	0,63	
Heisteria concinna	8	4	0,32	4,9	10	3	0,42	0,42	
Jacaranda caucana	6	4	0,59	4,9	16	4	1,17	1,17	
Trichilia pleeana*	6	5	0,13	4,7	3	2	0,07	0,07	
Cecropia peltata*	8	4	0,13	4,6	4	1	0,09	0,09	
Chrysochlamys glauca*	7	4	0,15	4,4	3	3	0,05	0,05	
Inga punctata*	7	4	0,13	4,4	4	4	0,12	0,12	
Inga oerstediana*	5	4	0,30	4,2	4	2	0,05	0,05	
Ocotea atirrensis*	5	4	0,13	3,9	3	2	0,09	0,09	
Hirtella americana	6	3	0,25	3,7	13	4	0,40	0,40	
Protium panamense	6	3	0,25	3,7	11	4	0,53	0,53	
Ceiba pentandra	3	2	1,00	3,7	4	3	1,51	1,51	
Guazuma ulmifolia*	3	2	0,66	3,1	1	1	0,50	0,50	
Clarisia biflora*	5	2	0,37	3,1	3	2	0,06	0,06	

Nombre científico		Ribereño					No ribereño			
		F	D	IVI	Α	F	D	IVI		
Trichilia martiana	6	2	0,22	3,1	6	4	0,31	0,31		
Lonchocarpus oliganthus	4	3	0,14	3,0	6	5	0,12	0,12		
Trichilia hirta*	4	3	0,12	3,0	3	2	0,11	0,11		
Lindackeria laurina	6	2	0,19	3,0	17	5	0,54	0,54		
Ficus insipida	2	2	0,75	3,0	4	4	3,65	3,65		
Picramnia latifolia*	4	3	0,08	2,9	1	1	0,01	0,01		
Guatteria amplifolia	4	3	0,08	2,9	11	3	0,82	0,82		
Hura crepitans	3	2	0,45	2,7	4	3	0,12	0,12		
Ochroma pyramidale*	4	2	0,26	2,6	1	1	0,02	0,02		
Oxandra venezuelana	3	1	0,75	2,6	29	5	1,72	1,72		
Guarea grandifolia*	4	2	0,26	2,6	2	1	0,06	0,06		
Chimarrhis latifolia	3	2	0,36	2,6	7	4	0,14	0,14		
Sapium glandulosum*	2	1	0,79	2,5	1	1	0,29	0,29		
Simarouba amara*	3	2	0,19	2,3	2	1	0,20	0,20		
Bombacopsis sessilis	2	2	0,31	2,2	4	1	0,20	0,20		
Licania arborea*	2	2	0,30	2,2	1	1	0,28	0,28		
Cojoba costaricensis	2	2	0,25	2,1	4	2	0,51	0,51		
Andira inermis*	3	2	0,07	2,1	2	2	0,16	0,16		
Stemmadenia donnellsmithii*	3	2	0,06	2,0	1	1	0,02	0,02		
Lafoensia punicifolia	2	2	0,18	2,0	4	3	0,22	0,22		
Brosimum costaricensis	1	1	0,60	1,9	1	1	1,13	1,13		
Casearia corimbosa*	3	1	0,08	1,5	1	1	0,03	0,03		
Myrsine coriacea*	3	1	0,04	1,4	2	2	0,03	0,03		
Virola surinamensis	1	1	0,31	1,4	1	1	0,04	0,04		
Schefflera morototoni	2	1	0,08	1,2	18	5	1,60	1,60		
Byrsonima crassifolia	1	1	0,22	1,2	1	1	0,05	0,05		
Leicontea amazonica	1	1	0,22	1,2	1	1	0,05	0,05		

Nombre científico		Ribereño					No ribereño			
		F	D	IVI	Α	F	D	IVI		
Leptolobium panamense	2	1	0,07	1,2	12	3	0,88	0,88		
Platymiscium pinnatum	2	1	0,06	1,2	5	3	0,60	0,60		
Lonchocarpus minimiflorus*	2	1	0,05	1,2	1	1	0,27	0,27		
Ficus tonduzzi	1	1	0,10	1,0	2	2	0,08	0,08		
Dendropanax arboreus	1	1	0,10	1,0	6	2	0,25	0,25		
Zuelania guidonea	1	1	0,09	1,0	2	2	0,74	0,74		
Cupania guatemalensis	1	1	0,08	1,0	5	3	0,22	0,22		
Trichilia americana	1	1	0,07	1,0	2	2	0,19	0,19		
Chaunochiton kappleri	1	1	0,06	1,0	1	1	0,20	0,20		
Pradosia atroviolacea	1	1	0,05	0,9	10	4	0,38	0,38		
Nectandra umbrosa	1	1	0,05	0,9	2	2	0,02	0,02		
Apeiba tibourbou	1	1	0,04	0,9	3	1	0,40	0,40		
Lacmellea panamensis	1	1	0,03	0,9	6	3	0,12	0,12		
Spondias mombin	1	1	0,02	0,9	2	2	0,49	0,49		
Alibertia edulis	1	1	0,02	0,9	1	1	0,01	0,01		
Annona papilionella	1	1	0,02	0,9	1	1	0,04	0,04		
Goethalsia meiantha	1	1	0,02	0,9	2	2	0,28	0,28		
Mouriri myrtilloides	1	1	0,02	0,9	3	2	0,03	0,03		
Myriocarpa longipes	1	1	0,01	0,9	1	1	0,01	0,01		
Cosmibuena grandiflora	1	1	0,01	0,9	1	1	0,05	0,05		
Hirtella racemosa	1	1	0,01	0,9	1	1	0,01	0,01		
Cestrum racemosum	1	1	0,01	0,9	1	1	0,02	0,02		
Zhantoxylum riedelianum	1	1	0,01	0,9	1	1	0,02	0,02		

Simbología: **A**: abundancia, **F**: frecuencia, **D**: dominancia, **IVI**: índice de valor de importancia. (*)Especies con mayor abundancia, frecuencia, dominancia e IVI en ecosistemas ribereños.

DISCUSION

1 Riqueza

Los bosques tropicales se caracterizan por albergar una gran diversidad biológica (Celentano *et al.* 2011). En muchos de ellos se han encontrado hasta más de 100 especies por hectárea; además la diversidad beta, es decir el recambio de especies en el espacio, es muy alta, por lo que es comprensible que la curva de rarefacción de especies obtenida indique que probablemente no se lograron muestrear todas las que podrían formar parte del ensamble de árboles de la comunidad (Cuadro 14.Figura 14). Es muy probable que al aumentar el esfuerzo se encuentre más de 150 especies, sobre todo si cambiamos las localidades y más aún si es en bosques ribereños considerados zonas de alta riqueza específica y de refugio para especies nativas (Naiman *et al.*1993; Boutin *et al.* 2003, Cabrera y Ribera 2016).

En los bosques ribereños estudiados se determinó una riqueza de 107 especies. Número de especies y esfuerzos de muestreo similares a otros estudios realizados en el neotrópico, donde la riqueza encontrada fue de poco más de 100 especies. En estos trabajos también resultó que con mayor esfuerzo de muestreo y en diferentes zonas esta riqueza aumentaría. Según los autores estos resultados se vieron favorecidos por la heterogeneidad de las zonas ribereñas, su gran diversidad y condiciones ambientales diferentes entre las localidades estudiadas (Pinzón *et al.* 2011, Cabrera y Ribera 2016). No obstante el análisis indica que si se logró obtener la diversidad de especies comunes y dominantes lo que indica que las especies que podrían aparecer de más serían las especies raras.

Lo anterior reafirma que en Costa Rica se deben realizar mayores esfuerzos para estudiar estos ecosistemas y principalmente a la hora de determinar impactos de acciones humanas o para restaurarlos. La toma de decisiones en torno a la conservación, el uso y el manejo de los bosques ribereños tropicales debería ser

basada en la información consolidada sobre las especies que los componen y la forma en que éstas se distribuyen en el espacio (Cabrera y Ribera 2016).

Los sitios y ecosistemas ribereños analizados mostraron diferencias en riqueza (Cuadro 1) y composición florística (Cuadro 14.Figura 15) con sus áreas boscosas adyacentes y entre sitios. Estas diferencias podrían verse influenciadas por factores como la alteración de los bosques analizados, la edad de recuperación, la historia de ocupación, el tipo de suelo, la zona climática, así como características geomorfológicas de los sitios como la pendiente y el relieve (Sirombra y Meza 2010, Pitman *et al.* 2014). Además del tipo de suelo y alguna variación climática.

2 Composición florística

Los sitios estudiados fueron diferentes entre sí a nivel de composición de especies a pesar de pertenecer a una misma región o cuenca hidrográfica. Según el análisis la diferencia mostrada es mayor entre sitios que entre ecosistemas ribereños y no ribereños. Resultados similares se han dado en otros estudios donde la riqueza, composición y estructura ha variado al interior del sitio de estudio, en la misma región y en regiones diferentes (Pitman *et al.* 2014, Cabrera y Ribera 2016). Estos resultados proporcionan información de gran valor al diseñar estrategias de restauración debido a diferencias en composición florística de ecosistemas ribereños y no ribereñas que sería importante considerar.

Los bosques ribereños y no ribereños a nivel de composición florística mostraron resultados que confirman similitudes en términos de especies. Se determinaron aproximadamente 60 especies comunes (número de Hill de orden 1) en los bosques ribereños o azonales, como no ribereños (zonales) estudiados (Cuadro 14.Figura 14). Lo anterior es importante para la recuperación de cobertura boscosa sobre todo en sitios deforestados adyacentes a ecosistemas ribereños con cobertura de bosque.

Sin embargo cuando analizamos las especies dominantes (número de Hill de orden 2), en ambos ecosistemas aparecen diferencias. La diversidad estimada de especies dominantes en ecosistemas no ribereños fue de unas 50 especies, mientras que en bosques ribereños o azonales fue significativamente menor y se estimó en 34 especies. Esta diferencia podría deberse a dificultades para el establecimiento y regeneración de las especies en ecosistemas ribereños influenciadas por la existencia de mayor dinámica en estos ambientes determinando gradientes transversales, longitudinales y verticales. Sumándose también procesos y disturbios de zonas adyacentes, resultando en una alta heterogeneidad ambiental (Ward et al. 2002; Elosegi y Díez 2008, Pignatari et al. 2008; Gurnell 2014).

La composición de especies encontrada en los ecosistemas ribereños sustenta una disimilitud con respecto a los bosques no ribereños estudiados. La presencia de 33 especies solo en los ambientes ribereños así como también el registro de 41 especies en solo los ecosistemas no ribereños acentúa diferencias entre los ecosistemas analizados. Otros autores mencionan contribuciones de una fuerte actividad en el ecosistema ribereño debido a las variaciones en el cauce de los ríos y quebradas (Berthelot *et al.* 2014, Shismenos *et al.* 2018). Muchas de estas condiciones son necesarias para la supervivencia de algunas especies, a la vez que se convierten en un filtro para otras. Sin embargo, a pesar de que parece que la composición del ensamblaje de árboles es diferente entre el sistema ribereño y no ribereño, la mayor diferencia se da entre localidades. Esto quiere decir que la diversidad beta es muy alta y tiene como consecuencia que la restauración es aún más complicada porque debería tomarse en cuenta además de la asociación de las plantas a los hábitats riparios las especies disponibles regionalmente.

En otros estudios realizados comparando el ecosistemas de ribera con bosques no ribereños también se encontraron diferencias en composición de especies, donde se menciona que la heterogeneidad espacial y temporal de los ecosistemas ribereños genera diferentes hábitats para especies con variados requerimientos, favoreciendo una alta diversidad, a menudo mayor que la de las áreas adyacentes (Naiman *et al.* 2000; Nilsson y Svedmark 2002; Young-Mathwes

et al. 2010) y se afirma que los bosques ribereños son destacados por presentar una diversidad biológica singular (Gutiérrez y Becerra 2018).

De las especies identificadas en ambos ecosistemas, la mayoría de las ubicadas en el bosque ribereño presentaron los valores más altos del índice de valor de importancia como también área basal. Estas diferencias podrían responder a que estos ecosistemas son más ricos en condiciones de mayor luminosidad, humedad y concentración de nutrientes en el suelo (Corbacho *et al.* 2003). Estas condiciones permiten que sean las especies generalistas las que más se favorecen. Por ejemplo, en bosques de Suramérica se ha observado que hay un grupo de especie que tanto dominan en ambientes riparios como no riparios y que generalmente también son de amplia distribución y mantienen altas abundancias (Pitman *et al.* 2001).

Otros factores como tipos de dispersión de polen y semillas podrían estar influyendo para que algunas especies forestales se encuentren solo en los ecosistemas ribereños, encontrándose en estos hábitats su polinizador o dispersor. Estos ambientes funcionan como corredores facilitando la dispersión y albergando una gran diversidad de fauna que los convierte en refugios para muchos animales que han perdido sus hábitats en las áreas circundantes (Montilla y Pacheco 2017).

La germinación de las semillas en las zonas ribereñas principalmente en áreas de inundación podría ser otro filtro para el establecimiento de algunas especies. Según Berthelot *et al.* (2014) hay variaciones importantes en condiciones edafológicas de las zonas de inundación de los cauces, lo que podría favorecer o dificultar la regeneración de las especies. Otro factor importante e influyente en la composición florística de los bosques por su poder de dispersión de frutos, semillas y polen, además de poder dificultar también el establecimiento de muchas especies (Contreras y Varela 2016).

Esta diferencia en composición florística de los ecosistemas de ribera se considera de gran importancia económica como ecológica. Las especies encontradas solo en estos ambientes adquieren prioridad para restaurar ecosistemas ribereños preservando la integridad de estos ecosistemas, su composición florística y potenciando su establecimiento, lo que optimiza el uso del

recurso económico. La determinación de especies solo en riberas de los cauces estudiados evidencia que la alteración humana de la cobertura vegetal de estos ecosistemas podría haber llevado a la desaparición de muchas especies que no se encuentran en zonas aledañas. Sumado a esto en muchos proyectos humanos para remediar impactos antrópicos muchas veces se repone bosque sin tomar en cuenta especies exclusivas de ambientes ribereños. Estas especies adquieren prioridad al realizar ejercicios de restauración de bosque ribereño por resultar exclusivas en las riberas.

3 Especies determinadas solo en ecosistemas ribereños.

Las especies identificadas solo en ecosistemas ribereños registraron poca abundancia y baja frecuencia probablemente afectadas por la predominancia de una alta dinámica en estos ecosistemas (Shismenos *et al.* 2018). La ocurrencia de crecidas de los cauces, fuertes flujos de viento, lavado de nutrientes del suelo en sectores con altas pendientes, inclusive presencia de derrumbes en los ecosistemas ribereños de los sitios de estudio podrían dificultar o favorecer el establecimiento de individuos de estas especies. Otras condiciones particulares podrían sumarse como luminosidad, humedad, y las características edafológicas permanentes (Biurrun *et al.* 2016).

Algunos autores concluyen en sus estudios realizados en zonas ribereñas que muchas especies de plantas tienen fuertes asociaciones con las zonas riparias, normalmente poseen mayor área basal y productividad como mayor cobertura de especies arbóreas sin embargo encuentran menor densidad de regeneración (Granados *et al.* 2006, Shismenos *et al.* 2018, Gutiérrez y Becerra 2018).

Dentro de las especies determinadas solo en ecosistemas ribereños el vainillo (*Stryphnodendron microstachyum*), es una de las de mayor dominancia e importancia ecológica. Posee grandes atributos para restauración de bosques ribereños como la producción de frutos durante casi todo el año (con semillas de altos porcentajes de germinación) favoreciendo la dieta de mastofauna y aves.

Contribuye en la estabilización de cauces, protección de acuíferos y recuperación o enriquecimiento de suelos. Pueden ser usados también en potreros proporcionando refugio y sombra para el ganado como también en plantaciones mixtas para uso maderable (UICN 2015).

Especies como el caracolillo (*Homalium racemosum*), el camíbar (*Copaifera aromatica*), el algodonero (*Celtis schippii*), el zota caballo (*Zygia longifolia*), jinocuabe (*Bursera simaruba*), guabas (*Inga densiflora*), guapinol (*Hymenaea courbaril*) y el pica pica (*Sloanea terniflora*) fueron comunes en zona de inundación de los sitios muestreados, con un alto valor de importancia y dominancia en los sitios (Cuadro 15).

Algunos géneros identificados solo en ecosistemas ribereños en este estudio han sido detectadas y asociados a zonas ribereñas o ecosistemas de galería en otros estudios realizados en Costa Rica y Suramérica, como *Copaifera*, *Celtis*, *Zygia*, *Inga*, *Cordia*, *Guarea*, *Ficus*, *Pouteria*, *Drypetes* y especies como *Homalium racemosum*, *Hymenaea courbaril*, *Sloanea terniflora*, *Guazuma ulmifolia*, *Tocoyena pittieri*, *Lonchocarpus heptaphyllus* (Nobel *et al.* 2000, Quesada y Quirós 2003, Alvarado 2010, Alvarado *et al.* (en prensa), Díaz *et al.* 2010, Cabrera y Ribera 2016, Ochoa *et al.* 2018).

Otras especies como *Bursera simaruba, Nectandra, Ocotea y Senna spectabilis,* se han documentado para estabilización de cauces fluviales, protección de mantos acuíferos y restauración (UICN 2015). Estas fueron identificadas en el estudio solo en ecosistemas de ribera, ocurrieron en sitios donde se observa que el establecimiento es difícil de lograr por las altas pendientes, suelos en ocasiones pedregosos o inestables y donde el cauce del río experimentó avenidas máximas en tiempos anteriores. Por lo que son especies recomendadas para restauraciones de bosque en sitios no solo ribereños sino también de condiciones difíciles para el establecimiento de especies arbóreas o también áreas de inundación de los cauces.

Las demás especies identificadas solo en ecosistemas ribereños poseen importancia ecológica y dominancia menor sin embargo continúan siendo parte de las que ostentan prioridad para la restauración boscosa en ecosistemas ribereños

de la zona de estudio, principalmente con sentido de conservación por la baja frecuencia y abundancia (Cuadro 15). Estas especies podrían experimentar extinciones locales ya que los sitios estudiados son altamente fragmentados con apenas pequeños parches de bosque tropical rodeados por piñales y pastizales.

4 Especies de bosque ribereño que también se encontraron en bosque no ribereño.

De las 74 especies presentes en ecosistemas no ribereños y ribereños hubo 31 que presentaron mayor abundancia, frecuencia, dominancia e importancia ecológica en este último ecosistema (Cuadro 17*). Este grupo de especies se convierten en un importante recurso forestal a considerar para esfuerzos de restauración de bosques ribereños. Después de las exclusivas ribereñas determinadas, este grupo de especies adquieren la segunda prioridad al restaurar bosque ribereño en la zona de estudio (6.1.1.1.1.a.Sección 6.1.Anexo 8).

De este grupo, el espavel (*Anacardium excelsum*) fue la especie de mayor importancia ecológica, seguido del ojoche (*Brosimum alicastrum*). Ambas se consideran importantes para la restauración de bosques por su alto poder de germinación, estabilización de cauces y regeneración. También son de suma importancia para los pobladores así como para la fauna que las usan como alimento y refugio por su producción de frutos y regeneración en bosques, podrían considerarse como especies oligárquicas (García *et al.* 2013, UICN 2015, Covarrubias *et al.* 2018).

Según Quesada y Quirós (2003), el espavel es una especie abundante en bosques de galería o ribereños y se presenta en la mayoría de los casos asociado a otras especies como *Ardisia revoluta* (tucuico), *Croton draco* (targuá), *Inga* sp (guaba), *Brosimum alicastrum* (ojoche), *Zygia* sp (sotacaballo), *Sterculia apetala* (panamá), *Luehea seemannii* (guácimo), *Terminalia oblonga* (surá), entre otras. Esta asociación con otras especies es de suma importancia para esfuerzos de reforestauración ya que se pueden introducir estas especies asociadas ayudando

al proceso de establecimiento y enriquecimiento del ecosistema que se trata de recuperar.

Otras especies como el hule (*Castilla tunu*), colpachí (*Croton schiedeanus*), palma real (*Attalea rostrata*), caliandra (*Calliandra magdalenae*), cedro maría (*Calophyllum brasiliense*), guatuso (*Mabea occidentalis*), el naranjito (*Swartzia ochnacea*) y el jobo de montaña (*Spondias radlkoferi*) están dentro del grupo de especies consideradas en segunda prioridad y ostentan altos valores de importancia. Así mismo las 20 restantes solo que presentan abundancia menor al igual que dominancia e importancia ecológica (Cuadro 17*, Anexo 8).

Estas especies representan un grupo de árboles identificados en ambos ecosistemas pero con mayor importancia ecológica en los ambientes de ribera (Cuadro 17*). Especies de gran abundancia y frecuencia en estos ecosistemas y que predominan en la cobertura observada, recomendados para esfuerzos de restauración por su poder de colonización observado en las riberas (Anexo 8).

Las restantes 43 especies de bosque ribereño que también ocurren en bosque no ribereño son la tercera opción o prioridad para restaurar bosque en riberas de ríos y quebradas en la zona de estudio (Cuadro 17, Anexo 8). Debido a que están presentes en ambos ecosistemas y poseen altos niveles de tolerancia a las condiciones de los ecosistemas ribereños.

5 Restauración de bosque ribereño con las especies determinadas en el estudio.

5.1 Recomendaciones sobre el sistema de siembra.

En la zona de protección y al inicio del período de lluvias (mes de mayo) se recomienda trazar líneas paralelas al cauce a 5 m de distancia y se sembrar árboles cada 10 m, quedando un total de 200 árboles por hectárea. Las franjas de siembra permitirán el mantenimiento durante los dos primeros años (rodajea de 1 metro y abono) y la circulación del personal para fertilizaciones y monitoreo así como

también el establecimiento de charral en medio de la franja con especies dispersadas por viento y fauna.

Se recomienda alternar especies de rápido crecimiento y fácil reproducción como *Gliricidia sepium, Pterocarpus hayesii, Lonchocarpus costaricensis, Erithryna costarricenses, Spondias mombin, Spondias purpurascens, Bursera simaruba, Brosimum alicastrum, B. costarricenses, Diphysa americana, Maclura tinctorea y Ficus spp. ya que surgirían primero y protejen las otras en veranos largos con su sombra y en períodos de viento, como especies nodrizas, método que ha tenido éxito en restauraciones de cobertura (Encino <i>et al.* 2013).

El objetivo de los espaciamientos de 10m es permitir el establecimiento de árboles cuyas semillas son dispersadas por el viento, al mismo tiempo que surjan especies que no han sido sembradas propiciando un sotobosque que le de protección contra el viento a los árboles plantados al mismo tiempo que se fomenta la competencia entre especies. La siembra directa de árboles con espaciamientos de 10m funciona como árboles núcleo (Kang *et al.* 1996, Gutiérrez 2010), métodos también empleados en restauraciones de bosque.

Muchas de las especies seleccionadas para plantarse producen grandes frutos que sirven de alimento atractivo para fauna dispersora de semillas como ratones y tepezcuintes (*Cuniculus paca*), guatusas (*Dasyprocta punctata*), herbívoros como dantas (*Tapirus bairdii*), saínos (*Pecari tajacu*), venados (*Odocoileus virginianus*), aves granaderas como pavas y pavones (*Penelope purpurascens, Crax rubra*), tinamús (*Tinamus major, Crypturellus soui*), entre otras especies como los monos aulladores o congos (*Alouatta palliata*), monos cara blanca (*Cebus imitator*) y monos tití (*Saimiri oerstedii*) que contribuyen al enriquecimiento del bosque y se potencia la dispersión de las especies.

5.2 Prioridad de las especies y reproducción.

Los árboles que se van a plantar se pueden extraer del bosque en tamaños inferiores a 1 metro de altura y recuperarlos en un sombreadero o vivero en bolsas acorde al presupuesto que se tenga, también se pueden utilizar áreas de sombra (50%) de árboles. Otra forma es plantar semillas extraídas de bosques aledaños a la zona de recuperación ya que esto suma especies que poseen tolerancia a condiciones adversas que se puedan tener en los ecosistemas de la zona a recuperar.

Las especies a plantar corresponderían a las de prioridad 1, determinadas solo en el ecosistema ribereño (Cuadro 15) en una proporción del 50% del total individuos a incorporar en la zona de protección. En la primera franja o zona de inundación (0-5 metros desde el borde del cauce) se recomienda plantar del 50% mencionado de especies determinadas solo en ecosistema ribereño un 35% de individuos correspondientes a especies identificadas en zonas de inundación (Cuadro 16).

De las especies con prioridad uno, se recomienda reproducir mediante semilla en viveros o sombreaderos y con pelets como sustrato (porque al sembrar se entierra con el árbol, no se contamina con plásticos, pesan menos los árboles que cuando se usa bolsa y mantiene más la humedad, hasta cuatro días, por experiencia en campo) Zygia longifolia, Inga densiflora, Hymenaea courbaril, Theobroma cacao, Pouteria amygdalicarpa, Theobroma angustifolium, Senna spectabilis, Pterocarpus hayesii, Inga barbourii.

Mientras que Stryphnodendron microstachyum, Homalium racemosum, Copaifera aromatica, Sloanea terniflora, Guarea macrophylla, Nectandra sp., Ocotea sp., Drypetes standleyi, Celtis schippii, Coccoloba venosa, Tocoyena pittieri, Adelia triloba, Casearia commersoniana, Cordia lucidula, Lonchocarpus costaricensis, Lonchocarpus heptaphyllus, se recomienda reproducirlas mediante extracción del bosque (por experiencia en campo es mejor que sea en la fase lunar

cuarto menguante para evitar deshidratación) de plántulas inferiores a 1 metro de altura o estacones que se colocan a germinar en bolsa o pelets.

Las especies con prioridad 2 (Cuadro 17) se plantarían en una proporción del 35% ya que una proporción similar de las especies registradas en ambos ecosistemas presentan mayor importancia ecológica en el ecosistema ribereño, además representaron el 25% de las especies del bosque ribereño.

Las especies con prioridad 2 que se recomienda reproducir en vivero mediante semilla serían Anacardium excelsum, Brosimum alicastrum, Calophyllum brasiliense, Swartzia ochnacea, Inga punctata, Ocotea atirrensis, Guarea grandifolia, Sapium glandulosum, Licania arbórea, Andira inermis, Lonchocarpus minimiflorus por mayor facilidad de conseguir las semillas por detectabilidad y mayor producción durante el año. Otras especies como Castilla tunu, Croton schiedeanus, Luehea seemannii, Attalea rostrata, Calliandra magdalenae, Mabea occidentalis, Spondias radlkoferi, Trichilia pleeana, Chrysochlamys glauca, Inga oerstediana, Guazuma ulmifolia, Clarisia biflora, Trichilia hirta, Picramnia latifolia, Ochroma pyramidale, Simarouba amara, Stemmadenia donnellsmithii, Casearia corimbosa y Myrsine coriácea se recomiendan plantar mediante estacas o plántulas de tamaños inferiores al metro de altura.

Por último las especies de prioridad 3 ocuparían el restante 15% de los individuos a plantar debido a que presentaron menor IVI en estos ecosistemas pero forman parte del mismo. De este grupo de especies con prioridad 3 (Cuadro 17) solo se recomienda reproducir en vivero Ceiba pentandra, Guatteria amplifolia, Hura crepitans, Lafoensia punicifolia, Dendropanax arboreus, Pradosia atroviolacea, Nectandra umbrosa y Annona papilionella ya que muchas de este grupo se establecen solas mediante dispersión por fauna, viento, agua o se pueden usar también como estacones como Spondias mombin, Brosimum spp. y otras.

CONCLUSIONES

Cerca del 35% de las especies registradas en ecosistemas ribereños de las subcuencas estudiadas no fueron encontradas fuera de este, lo que otorga importancia a la conservación de los ecosistemas ribereños.

Se identificaron 33 especies que solo fueron registradas en los ecosistemas ribereños estudiados. Estas especies adquieren prioridad para la restauración de ecosistemas ribereños en las cuencas estudiadas.

El ecosistema ribereño presentó menor riqueza, abundancia y área basal que el no ribereño.

Las especies presentes solo en el ecosistema ribereño registraron baja frecuencia y abundancia.

El 36% de las especies presentes solo en el ecosistema ribereño fueron localizadas a menos de 5 m del cauce, lo que resalta la importancia de conservar las zonas de protección de 15 m para la protección del restante 64% de especies presentes solo en el ecosistema ribereño.

El 36% de las especies presentes solo en el ecosistema ribereño y localizadas a menos de 5 m del cauce serían las más afectadas por las crecidas de los ríos a causa del cambio climático y la creciente actividad antrópica.

El 64% de las especies identificadas en ecosistemas no ribereños (115 en total) se registraron también en ecosistemas ribereños (74 especies), estas serían importantes para la restauración de ecosistemas ribereños.

Las especies que se encontraron en ambos ecosistemas presentaron mayor área basal en el ecosistema ribereño.

El 97% de las especies que se encontraron en ambos ecosistemas presentaron mayor índice de valor de importancia en el ecosistema ribereño.

Las especies registradas solo en el ecosistema no ribereño requieren gran importancia para su conservación ya que en la mayoría de las zonas del país solo están quedando remanentes de bosques ribereños, lo que indica una gran pérdida de estas especies que no fueron localizadas en las riberas.

BIBLIOGRAFÍA

- Alvarado Álvarez H. 2010. Caracterización estructural y florística de un bosque ribereño de la cuenca del río tocuyo (tocuyo occidental), Estado Lara, Venezuela. Ernstia 20 (1), Caracas Venezuela.
- Alvarado A. H., Alcides Mondragón y María Ángeles Alonso. Flora ribereña de la cuenca del río Tocuyo, estados Lara, Trujillo y Falcón, Venezuela. En prensa. Consultado el 09/06/2019, en https://www.google.com.
- Anderson D., Moggridge H., Warren P. y Shucksmith J. 2015. The impacts of 'runof-river' hydropower on the physical and ecological condition of rivers. Water and Environment Journal, 29: 268–276.
- Baltodano J. 2007. Decimotercer Informe Estado de la Nación en Desarrollo Humano Sostenible. Informe final. Bosque, cobertura y uso forestal. San José, Costa Rica. Consultado el 10/02/2019, en https://www.google.com.
- Berthelot JS, D Saint-Laurent, V Gervais-Beaulac, D Savoie. 2014. Assessing the effects of periodic flooding on the population structure and recruitment rates of riparian tree forests. Water 6: 2614-2633.
- Biurrun I, J. A. Campos, I. García-Mijangos, M. Herrera & J. Loidi. Floodplain forests of the Iberian Peninsula: Vegetation classification and climatic features.

 Applied Vegetation Science, 19:336–354.
- Boutin C., Benoit Jobin, Luke Bélanger. 2003. Importance of Riparian Habitats to Flora Conservation in Farming Landscapes of Southern Québec, Canada. Agriculture Ecosystems & Environment 94(1):73-87.
- Cabrera Amaya D. M. y O. Rivera Díaz. 2016. Composición florística y estructura de los bosques ribereños de la cuenca baja del río Pauto, Casanare, Colombia. Caldasia 38 (1): 53-85.
- Cedeño B., A. Hernández, A. López & E. Villalobos. 2010. Caracterización socioeconómica de la cuenca del Río Grande de Térraba. Escuela de Relaciones Internacionales: Universidad Nacional. Heredia, Costa Rica.Consultado el 09/02/2019 en https://www.researchgate.net.

- Celentano D., Rakan A. Zahawi, Bryan Finegan, Fernando Casanoves, Rebecca Ostertag, Rebecca J. Cole y Karen D. Holl. 2011. Restauración ecológica de bosques tropicales en Costa Rica: efecto de varios modelos en la producción, acumulación y descomposición de hojarasca. Revista Biología Tropical, 59 (3): 1323-1336, September.
- Chao A., Gotelli N. J., Hsieh T.C., Sander E. L., Ma K. H., Colwell R. K., y Ellison A.M. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84, 45-67.
- Contreras C. I. y Carlos Varela W. 2016. Mecanismos de dispersión de diásporas en un bosque perturbado de la cumaca, estado Carabobo, Venezuela. Acta Botánica Venezuelica, 39 (2), pp. 128-156.
- Corbacho C, Sánchez JM, Costillo E. 2003. Patterns of structural complexity and human disturbance of riparian vegetation in agricultural landscapes of a Mediterranean area. Agriculture, Ecosystems and Environment 95: 495-507.
- Covarrubias M., López Acosta J. C., Lascurain-Rangel M., Rebolledo V., Pedraza R. A. y Avendaño Reyes S. 2018. Bosques oligárquicos de Oecopetalum mexicanum enriquecidos con especies nativas de la Sierra de Misantla, México. Madera y Bosques, 24 (3).
- Díaz W. A., J. Rueda, O. Acosta, O. Martínez y H. Castellanos. 2010. Composición florística del bosque ribereño del río San José, Reserva forestal de imataca, estado Bolívar, Venezuela. Acta botánica venezuelica. 33 (1): 1-21.
- Elosegi A. y J. Díez. 2009. La vegetación terrestre asociada al río: el bosque de ribera. Conceptos y técnicas en ecología fluvial, Separata del capítulo 17. Primera edición, abril 2009, Fundación BBVA, país Vasco, p 311-321.
- Encino Ruiz L. Roberto Lindig Cisneros, Mariela Gómez Romero y Arnulfo Blanco García. 2013. Desempeño de tres especies arbóreas del bosque tropical caducifolio en un ensayo de restauración ecológica. Restauración ecológica. Botanical Sciences 91 (1): 107-114.

- Esri. 2018. DigitalGlobe, Earthstar Geographics, CNES/Airbus DS, GeoEye, icubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.Consultado el 20/05/2019 en https://www.arcgis.com.
- García M. J., Gónzalez V. R. y P. E. Yaxcal. 2013. Levantamiento y evaluación de la línea base para el monitoreo de los efectos del cambio climático en la fenología reproductiva de especies vegetales de importancia ecológica en la Reserva de Biosfera Maya. Proyecto FD26-2011. Centro de Estudios Conservacionistas, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala. Consejo Nacional de Ciencia y Tecnología. Guatemala.
- González S.J. 2012. Caracterización de los ecosistemas vegetales y uso del suelo en El Rodeo, Costa Rica. Brenesia, 77: 23-40.
- Gurnell Angela M. 2014. Plants as river system engineers. Earth Surface Processes and Landforms, 39 (1) (4-25).
- Gutiérrez L. M. 2010. Restauración de Bosques en el Área de Conservación Guanacaste, mediante la ejecución del Plan de Gestión Ambiental de la Empresa Propietaria de la Red S.A. Respecto al desarrollo del Proyecto SIEPAC. Fundación de Parques Nacionales, Área de Conservación Guanacaste, Estación Experimental Forestal Horizontes. Liberia. Guanacaste. Costa Rica.
- Gutierrez Ivon y Pablo Becerra. 2018. Composición, diversidad y estructura de la vegetación de bosques ribereños en el centro sur de Chile. BOSQUE 39(2): 239-253.
- Instituto Metereológico Nacional. 2009. Atlas Climatológico de Costa Rica. Consultado el 09/02/2019 en https://www.imn.ac.cr/atlas-climatologico.
- Kang K., Gina Van Klompenburg, Elizabeth Taylor, John Shih, Carol Schwendener, Joe Allen, Mario Gadea, David Morales, Felix Carmona, Freddy Perez, Martha Rosemayer, Liz Woike, Milena Gutierrez L. 1996. Comparación de la composición de especies entre islas de regeneración plantadas en 1995 y

- 1996 en el Corredor Biológico Rincón-Cacao. (En http://copa.acguanacaste.ac.cr, consultado el 9 de febrero 2018),
- Lorion C.M, Kennedy BP. 2009. Riparian forest buffers mitigate the effects of deforestation on fish assemblages in tropical headwater streams. Ecological Applications, 19(2):468-79.
- Lulea University of Technology. Department of Civil, Environmental and Natural Resources Engineering.Romero I. F., Miguel A Cozano, Rodrigo A Gangas y Paulette I Naulin. 2014. Zonas ribereñas: protección, restauración y contexto legal en Chile. BOSQUE, 35(1): 3-12.
- Merlos S. D, Celia A. Harvey, A. Grijalva, A. Medina, S. Vílchez & B Hernández. 2005. Diversidad, composición y estructura de la vegetación en un agropaisaje ganadero en Matiguás, Nicaragua. Revista de Biología Tropical, 53 (3-4): 387-414.
- Montilla Pacheco A. y Henry Antonio Pacheco Gil. 2017. Comportamiento temporal y espacial del bosque ribereño en el curso bajo del río Portoviejo y la quebrada Ecuador. Rev. Int. Contam. Ambie. 33 (1) 21-35.
- Moreno B.F., L. C. García & G. Márquez C. 1987. Productividad e importancia del bosque ripario del complejo de ciénagas de Chucurí (Departamento de Santander, Colombia). Actualidades biológicas, 16 (61): 93-102.
- Muñoz J. O. 2014. Evaluación de la importancia de los elementos de un paisaje antropizado para la retención de diversidad de murciélagos en el istmo de tehuantepec, Oaxaca, México. Tesis para obtener el grado de maestro en ecología tropical. Universidad Veracruzana, Centro de Investigaciones Tropicales. Consultado el 10/06/2019 en https://core.ac.uk.
- Naiman R.J, Decamps H, Pollock M. 1993. The role of riparian corridors in maintaining regional biodiversity. Ecol. Appl. 3:209-12.
- Naiman, R.J., R.E. Bilby, and P.A. Bisson, 2000. Riparian Ecology and Management in the Pacific Coastal Rain Forest. BioScience 50:996-1011.

- Nebel Gustav, Lars Peter Kvist, Jerome K. Vanclay, Henning Christensen, LuisFreitas y Juan Ruiz. 2000. Estructura y composición florística del bosque de la llanura aluvial en la amazonía peruana, Folia amazónica, 10 (1-2).
- Nilsson C. y Svedmark M. Basic Principles and Ecological Consequences of Changing Water Regimes: Riparian Plant Communities. Environmental Management 30 (4), pp 468–480.
- Ochoa G.S., Leandro J. Ramos V., Fernando Moreno S., Nelly Jiménez P., María A. Haas E. y Leydy E. Muñiz D. 2018. Diversidad de flora acuática y ribereña en la cuenca del río Usumacinta, México. Revista Mexicana de Biodiversidad, 89 supl.dic México.
- Oliveira-Filho A.T., Enivanis A. Vilelat, Douglas A. Carvalhot & M.I. Gavilanes. 1994. Effects of soils and topography on the distribution of tree species in a tropical riverine forest in south-eastern Brazil. Journal of Tropical Ecology, 10: 483-508.
- Picado, J. 2012. La responsabilidad ambiental del Ice en el P. H. El Diquís. Aportes de las investigaciones biofísicas. En Ambientico 227, Artículo 2, Pp. 10-16. Consultado el 08/01/2019 en http://www.ambientico.una.ac.cr.
- Pignatari D. D., Flavia Regina Capellotto Costa & William E. Magnusson. 2008. How wide is the riparian zone of small streams in tropical forests? A test with terrestrial herbs. Journal of Tropical Ecology, 24:65–74.
- Pinzón Pérez L., C. Castellanos-Castro, A. Cardona-Cardozo, C. Mora-Fernández y O. Vargas-Río.s 2011. Caracterización de las comunidades vegetales presentes en el bloque Cubiro, cuenca baja del Río Pauto, Casanare (Colombia). En: T. León-Sicard (ed.) Mamíferos, Reptiles y Ecosistemas del Bloque Cubiro (Casanare): Educación Ambiental para la Conservación. Instituto de Estudios Ambientales Universidad Nacional de Colombia, Alange Energy Corp., Bogotá D.C. 97-150.
- Pitman, N. C., J. W. Terborgh, M. R. Silman, V.P. Núñez, D.A.Neill, C.E. Cerón y M. Aulestia. 2001. Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology, 82(8), 2101-2117.

- Pitman N.C., J.E.G. Andino, M. Aulestia, C.E. Cerón, D.A. Neill, W. Palacios, G. Rivas Torres, M.R. Silman y J.W. Terborgh. 2014. Distribution and abundance of tree species in swamp forests of Amazonian Ecuador. Ecography 37(9): 902-915.
- Pusey B.J. y A. H. Arthington. 2003. Importance of the riparian zone to the conservation and management of freshwater fish: a review. Marine and freshwater research, 54: 1-16.
- Quesada M. R. y K. Quirós B. 2003. Estudio de especies forestales con poblaciones reducidas o en peligro de extinción, informe final. Instituto Tecnológico de Costa Rica, Ministerio del Ambiente y Energía (Sinac, ACT, subregión Nicoya). Cartago, Costa Rica. Consultado el 05/06/2019, en https://repositoriotec.tec.ac.cr.
- R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Viena, Austria. URL http://www.R-project.org/.
- Romero F.I., Miguel A Cozano, Rodrigo A Gangas, Paulette I. Naulin. 2014. Zonas ribereñas: protección, restauración y contexto legal en Chile BOSQUE 35(1): 3-12.
- Sánchez G. D., M. Á. Hernández-García & G. F. López-Ríos. Ecología de las zonas ribereñas. Revista Chapingo Serie Ciencias Forestales y del Ambiente 12(1): 55-69.
- Sekercioglu C.H. 2009. Tropical ecology: Riparian corridors connect fragmented forest bird populations. Current Biology, 19(5): R210-R213.
- Schismenos Spyros, Zaimes George, lakovoglou Valasia, Emmanouloudis Dimitrios. 2018. Environmental sustainability and ecotourism of riparian and deltaic ecosystems: opportunities for rural Eastern Macedonia and Thrace, Greece. International Journal of Environmental Studies. 1-14. 10.1080/00207233.2018.1510579.
- SINAC (Sistema Nacional de Áreas de Conservación). 2013. "Mapa de Tipos de Bosque de Costa Rica, Inventario Nacional Forestal. Escala base 1:50 000.

- Proyección Costa Rica CRTM05. Elaborado para el SINAC mediante consultoría financiada por el programa REDD\CCAD\GIZ, Costa Rica.
- Sirombra Martín G. y Leticia M. Mesa. 2010. Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 58 (1): 499-510, March.
- Soler Pedro E., J. L. Berroterán, J. L. Gil y R. A. Acosta. 2012. Índice valor de importancia, diversidad y similaridad florística de especies leñosas en tres ecosistemas de los llanos centrales de Venezuela. Agronomía Tropical, 62(1-4), 025-038.
- UICN. 2015. Especies para restauración. (Consultado el 22/02/2019 en https://www.especiesrestauracion-uicn.org. UICN ORMACC.
- Umaña V. G. y Mónica Springer. 2006. Variación ambiental en el río Grande de Térraba y algunos de sus afluentes, Pacífico sur de Costa Rica. En Revista Biología Tropical 54 (Suppl. 1): 265-272, Septiembre.
- Vásquez G., J. G. García Franco, G. Castillo, F. Escobar, A. Guillén, M. L. Martínez, K. Mehltreter, R. Novelo, E. Pineda, V. Sosa, C. Valdepino, A. Campos C., R. Landgrave, E. Montes de Oca, A. Ramírez y J. Galindo. 2015. Ecosistemas ribereños: un paisaje fragmentado. CONABIO. Biodiversitas, 119:7-11
- Wang Quingran. 2013. Hydro development-induced environmental impact on river rcosystem. Open Journal of Social Sciences, 1 (5): 1-4.
- Ward, J. V., K. Tockner, D. B. Arscott, y C. Claret. 2002. Riverine landscape diversity. Freshwater Biol 47:517-539.
- Young-Mathews, A., S. W. Culman, S. Sánchez-Moreno, A. T. O'Geen, H. Ferris. 2010. Plant-soil biodiversity relationships and nutrient retention in agricultural riparian zones of the Sacramento V, California. Agroforest Syst 80:41-60.
- Young-Mathews, A., S. W. Culman, S. Sánchez-Moreno, A. T. O'Geen, H. Ferris. 2010. Plant-soil biodiversity relationships and nutrient retention in agricultural riparian zones of the Sacramento Valley, California. Agroforest Syst 80:41-60.

ANEXOS

Anexo 1. Especies forestales registradas en tres subcuencas del río Grande de Térraba, río Volcán, quebradas Dibujada y Fría, 2017. Se indica la abundancia en bosque no ribereño (BNR), bosque ribereño (BR), abundancia total (A), dominancia (D) y el índice de valor de importancia.

Nombre científico	Nombre Común	Familia	BNR	BR	Α	D	IVI
Adelia triloba	Clavillo	Euphorbiaceae		1	1	0,01	0,30
Alchornea costaricensis	Fosforillo	Euphorbiaceae	3		3	0,08	0,74
Alibertia edulis	Madroño	Rubiaceae	1	1	2	0,03	0,60
Anacardium excelsum	Espavel	Anacardiaceae	1	27	28	21,42	22,22
Andira inermis	Arenillo	Fabaceae	2	3	5	0,24	1,45
Annona papilionella	Anonillo	Annonaceae	1	1	2	0,06	0,63
Apeiba tibourbou	Peine de mico	Malvaceae	3	1	4	0,45	1,14
Astronium graveolens	Ron	Anacardiaceae	5		5	0,79	1,90
Attalea rostrata	Corozo	Arecaceae	15	21	36	3,90	8,45
Bombacopsis sessilis	Yuco	Bombacaceae	4	2	6	0,51	1,58
Brosimum alicastrum	Ojoche	Moraceae	3	9	12	11,47	12,19
Brosimum costaricensis	Ojoche	Moraceae	1	1	2	1,73	1,98
Brosimum lactescens	Ojoche	Moraceae	1		1	0,02	0,30
Brosimum utile	Baco	Moraceae	23		23	5,82	7,95
Bursera simaruba	Jinocuabe	Burseraceae		3	3	0,30	1,11
Byrsonima crassifolia	Nance	Malpighiaceae	1	1	2	0,27	0,80
Calliandra magdalenae	Cabello de ángel	Fabaceae	9	28	37	1,00	6,20
Calophyllum brasiliense	Cedro María	Clusiaceae	7	17	24	2,58	6,75
Calycolpus warszewiczianus	Guayabo negro	Myrtaceae	6		6	0,08	1,04
Caryocar costaricense	Ajo	Cariocaraceae	2		2	3,74	3,61
Casearia aculeata	Capulín corona	Salicaceae	3		3	0,14	0,98
Casearia arborea	Manga larga	Salicaceae	2		2	0,05	0,62
Casearia commersoniana	Garrapatillo	Salicaceae		1	1	0,01	0,30
Casearia corimbosa	Garrapatillo	Salicaceae	1	3	4	0,11	0,87
Casearia coronata	Garrapatillo	Salicaceae	1		1	0,01	0,30
Casearia sp. 1	Plomillo	Salicaceae	1		1	0,02	0,31
Casearia sylvestris	Plomillo	Salicaceae	4		4	0,07	1,03

Nombre científico	Nombre Común	Familia	BNR	BR	Α	D	IVI
Castilla tunu	Hule	Moraceae	30	32	62	7,93	15,25
Cecropia peltata	Guarumo	Cecropiaceae	4	8	12	0,22	2,32
Ceiba pentandra	Ceiba	Bombacaceae	4	3	7	2,51	3,68
Celtis schippii	Algodonero	Ulmaceae		4	4	0,23	1,15
Cestrum racemosum	Zorrillo	Solanaceae	1	1	2	0,03	0,60
Chaunochiton kappleri	Corocito	Olacaceae	1	1	2	0,27	0,80
Chimarrhis latifolia	Yema de huevo	Rubiaceae	7	3	10	0,49	2,53
Chrysochlamys glauca	Botoncillo	Clusiaceae	3	7	10	0,20	2,87
Clarisia biflora	Ojoche negro	Moraceae	3	5	8	0,43	1,91
Coccoloba venosa	Papaturro	Polygonaceae		1	1	0,03	0,31
Cojoba costaricensis	Lorito de montaña	Fabaceae	4	2	6	0,75	1,97
Copaifera aromatica	Camíbar	Fabaceae		6	6	1,08	2,04
Cordia lucidula	Laurel	Boraginaceae		1	1	0,01	0,30
Cosmibuena grandiflora	Magnolia	Rubiaceae	1	1	2	0,06	0,62
Croton schiedeanus	Colpachí	Euphorbiaceae	9	42	51	0,89	8,08
Cupania guatemalensis	Manteco	Sapindaceae	5	1	6	0,30	1,79
Dendropanax arboreus	Cacho de venado	Araliaceae	6	1	7	0,35	1,55
Dilodendron costaricense	Iguano	Sapindaceae	2		2	0,04	0,61
Dracaena fragrans	Caña india	Asparagaceae		1	1	0,01	0,30
Drypetes standleyi	Madroño	Putranjivaceae		1	1	0,17	0,42
Duguetia panamensis	Yayo amarillo	Annonaceae	1		1	0,02	0,30
Eugenia sp. 1	Murta	Myrtaceae	1		1	0,01	0,30
Eugenia uniflora	Pitanga	Myrtaceae	1		1	0,01	0,30
Ficus costaricana	Higuerón	Moraceae		1	1	0,02	0,31
Ficus insipida	Higuerón	Moraceae	4	2	6	4,39	5,29
Ficus sp. 1	Higuerón	Moraceae		1	1	0,13	0,39
Ficus tonduzzi	Higuerón	Moraceae	2	1	3	0,18	1,01
Garcinia madruno	Madroño	Clusiaceae	1		1	0,06	0,34
Goethalsia meiantha	Guácimo blanco	Malvaceae	2	1	3	0,30	1,11
Guarea grandifolia	Cedrillo	Meliaceae	2	4	6	0,32	1,42
Guarea macrophylla	Cocora	Meliaceae		2	2	0,22	0,57
Guarea sp. 1	Cocora	Meliaceae		2	2	0,19	0,54
Guatteria amplifolia	Anonillo negro	Annonaceae	11	4	15	0,89	3,73
Guazuma ulmifolia	Guácimo	Malvaceae	1	3	4	1,16	2,10

Nombre científico	Nombre Común	Familia	BNR	BR	Α	D	IVI
Guettarda crispiflora	Salvia de montaña	Rubiaceae	7		7	0,27	1,49
Heisteria concinna	Garrapatillo	Chrysobalanaceae	10	8	18	0,73	4,28
Henriettea sucosa	Canilla de mula	Melastomataceae	1		1	0,02	0,30
Hieronyma alchorneoides	Pilón	Euphorbiaceae	18		18	4,85	6,86
Hirtella americana	Garrapatillo	Chrysobalanaceae	13	6	19	0,65	4,88
Hirtella racemosa	Garrapatillo	Chrysobalanaceae	1	1	2	0,02	0,59
Homalium racemosum	Caracolillo	Salicaceae		4	4	1,37	1,88
Hura crepitans	Jabillo	Euphorbiaceae	4	3	7	0,57	2,49
Hymenaea courbaril	Guapinol	Fabaceae		1	1	0,56	0,74
Inga barbourii	Guaba	Fabaceae		1	1	0,01	0,30
Inga densiflora	Guaba	Fabaceae		3	3	0,19	0,83
Inga oerstediana	Guaba	Fabaceae	4	5	9	0,35	2,51
Inga punctata	Guaba	Fabaceae	4	7	11	0,25	3,01
Inga sp. 1	Guaba	Fabaceae		1	1	0,13	0,40
Jacaranda caucana	Búho	Bignoniaceae	16	6	22	1,76	5,32
Lacmellea panamensis	Lagarto negro	Apocynaceae	6	1	7	0,16	1,58
Lafoensia punicifolia	Cascarillo	Lythraceae	4	2	6	0,40	1,87
Leicontea amazonica	Costilla de danto	Fabaceae	1	1	2	0,27	0,80
Leptolobium panamense	Guayacán amarillo	Fabaceae	12	2	14	0,95	2,92
Licania arborea	Alcornoque	Chrysobalanaceae	1	2	3	0,58	1,34
Lindackeria laurina	Carbonero	Achariaceae	17	6	23	0,73	4,78
Lonchocarpus costaricensis	Chaperno	Fabaceae		1	1	0,01	0,30
Lonchocarpus heptaphyllus	Chaperno	Fabaceae		1	1	0,01	0,30
Lonchocarpus minimiflorus	Chaperno	Fabaceae	1	2	3	0,32	0,94
Lonchocarpus oliganthus	Chaperno	Fabaceae	6	4	10	0,26	2,72
Luehea seemannii	Guácimo colorado	Malvaceae	4	17	21	6,24	8,47
Mabea occidentalis	Guatuzo	Euphorbiaceae	5	17	22	1,10	4,79
Miconia argentea	Lengua de vaca	Melastomataceae	3		3	0,06	0,73
Mouriri myrtilloides	Guayabillo	Myrtaceae	3	1	4	0,05	1,01
Myriocarpa longipes	Ortiga	Urticaceae	1	1	2	0,03	0,60
Myrsine coriacea	Tucuico	Myrsinaceae	2	3	5	0,08	1,13
Nectandra sp. 1	Aguacatillo	Lauraceae	1		1	0,07	0,35
Nectandra sp. 2	Aguacatillo	Lauraceae		2	2	0,10	0,47
Nectandra sp. 3	Aguacatillo	Lauraceae		1	1	0,01	0,30

Nombre científico	Nombre Común	Familia	BNR	BR	Α	D	IVI
Nectandra sp. 4	Aguacatillo	Lauraceae	1		1	0,02	0,30
Nectandra umbrosa	Aguacatillo	Lauraceae	2	1	3	0,07	0,92
Ochroma pyramidale	Balsa	Malvaceae	1	4	5	0,28	1,29
Ocotea atirrensis	Aguacatillo	Lauraceae	3	5	8	0,22	2,11
Ocotea insularis	Aguacatillo	Lauraceae	2		2	0,09	0,65
Ocotea sp. 1	Aguacatillo	Lauraceae	1		1	0,02	0,30
Ocotea sp. 2	Aguacatillo	Lauraceae	2		2	0,08	0,65
Ocotea sp. 3	Aguacatillo	Lauraceae		2	2	0,08	0,45
Ocotea sp. 4	Aguacatillo	Lauraceae	1		1	0,01	0,30
Oxandra venezuelana	Yayo	Annonaceae	29	3	32	2,47	6,51
Persea caerulea	Aguacatillo	Lauraceae	1		1	0,15	0,41
Picramnia latifolia	Coralillo	Simaroubaceae	1	4	5	0,09	1,33
Platymiscium pinnatum	Cachimbo	Fabaceae	5	2	7	0,66	1,99
Pouteria amygdalicarpa	Sapote	Sapotaceae		1	1	0,10	0,37
Pouteria campechiana	Sapote	Sapotaceae	3		3	0,10	0,76
Pradosia atroviolacea	Nisperillo	Sapotaceae	10	1	11	0,43	2,39
Protium glabrum	Canfín	Burseraceae	3		3	0,10	0,57
Protium guianense	Canfín	Burseraceae	1		1	0,01	0,30
Protium panamense	Canfín	Burseraceae	11	6	17	0,78	3,65
Protium pecuniosum	Canfín	Burseraceae	2		2	0,03	0,61
Pseudolmedia spuria	Guapinolillo	Moraceae	1		1	0,01	0,30
Pterocarpus hayesii	Sangrillo	Fabaceae		1	1	0,01	0,30
Sapium glandulosum	Yos	Euphorbiaceae	1	2	3	1,07	1,55
Schefflera morototoni	Pavillo	Araliaceae	18	2	20	1,68	5,06
Schizolobium parahyba	Gallinazo	Fabaceae	2		2	0,95	1,35
Senna spectabilis	Candelillo	Fabaceae		1	1	0,02	0,31
Simarouba amara	Aceituno	Simaroubaceae	2	3	5	0,39	1,39
Siparuna thecaphora	Limoncillo, pasmo	Siparunaceae		3	3	0,11	0,58
Sloanea terniflora	Pica	Elaeocarpaceae		3	3	0,08	0,74
Spondias mombin	Jobo	Anacardiaceae	2	1	3	0,51	1,28
Spondias radlkoferi	Jobo negro	Anacardiaceae	2	7	9	2,56	4,30
Staphylea occidentalis	Cedrillo	Staphyleaceae	3		3	0,09	0,75
Stemmadenia	Cuijorro	Angovinosasas	4	3	1	0.00	1 22
donnellsmithii	Guijarro	Apocynaceae	1	3	4	0,08	1,22

Nombre científico	Nombre Común	Familia	BNR	BR	Α	D	IVI
Stryphnodendron	Vainillo	Fabaceae		1	1	1,99	1,90
microstachyum	vairiiio	i abaceae		1	'	1,33	1,30
Swartzia ochnacea	Naranjito	Fabaceae	14	14	28	0,55	5,32
Terminalia oblonga	Surá	Combretaceae	1		1	0,2 4	0,48
Tetragastris panamensis	Canfín	Burseraceae	5		5	0,80	1,53
Theobroma angustifolium	Cacao de montaña	Malvaceae		1	1	0,03	0,31
Theobroma cacao	Cacao	Malvaceae		2	2	0,03	0,41
Tocoyena pittieri	Aguacate montaña	Rubiaceae		1	1	0,02	0,31
Trichilia americana	Cedrillo	Meliaceae	2	1	3	0,26	1,08
Trichilia hirta	Mata piojo	Meliaceae	3	4	7	0,23	2,02
Trichilia martiana	Manteco	Meliaceae	6	6	12	0,52	3,33
Trichilia pleeana	Fosforillo	Meliaceae	3	6	9	0,21	2,39
Trophis racemosa	Ramón	Moraceae	1		1	0,01	0,30
Virola koschnyi	Fruta dorada	Myristicaceae	14		14	0,28	3,33
Virola surinamensis	Fruta dorada	Myristicaceae	1	1	2	0,35	0,86
Vochysia ferruginea	Mayo colorado	Vochysiaceae	16		16	1,37	4,22
Vochysia guatemalensis	Mayo blanco	Vochysiaceae	2		2	0,04	0,42
Xylopia sericophylla	Malagueto	Annonaceae	1		1	0,04	0,32
Zhantoxylum riedelianum	Lagartillo	Rutaceae	1	1	2	0,03	0,60
Zuelania guidonea	Cagajón	Salicaceae	2	1	3	0,83	1,54
Zygia longifolia	Zota caballo	Fabaceae		3	3	0,33	0,94

Simbología: **BNR**: Bosque no ribereño/ **BR**: Bosque ribereño/ **A**: Abundancia/ **D**: Dominancia/ **IVI**: Índice de valor de importancia.

Anexo 2. Especies registradas en ecosistemas no ribereños del río Volcán, subcuenca del río Grande de Térraba, 2017.

Especies	Nombre común	Abundancia	Frecuencia	Dominancia	IVI
Brosimum utile	Васо	21	4	5,79	34,79
Oxandra venezuelana	Yayo	28	5	1,61	22,49
Caryocar costaricense	Ajo	2	2	3,74	16,97
Castilla tunu	Hule	11	1	1,94	13,11
Vochysia ferruginea	Mayo colorado	10	4	1,06	11,75

Protium panamense Canfín 11 4 0,	.66 11,54 .53 10,15 .38 9,14 .23 8,11 .11 7,61 .27 7,00
,	9,14 23 8,11 11 7,61
Pradosia atroviolacea Nisperillo 10 4 0,	.23 8,11 .11 7,61
	.11 7,61
Lindackeria laurina Carbonero 9 4 0,	
Virola koschnyi Fruta dorada 7 5 0,	,27 7,00
Heisteria concinna Garrapatillo 8 3 0,	
Tetragastris panamensis Canfín 5 2 0,	,80 6,93
Hirtella americana Garrapatillo 6 4 0,	,08 6,25
Brosimum costaricensis Ojoche 1 1,	,13 5,64
Lacmellea panamensis Lagarto negro 6 3 0,	,12 5,57
Cojoba costaricensis Lorito de montaña 4 2 0,	,51 5,35
Mabea occidentalis Guatuzo 5 3 0,	,12 5,12
Calophyllum brasiliense Cedro María 3 0,	,31 5,01
Hieronyma alchorneoides Pilón 1 1 0,	,86 4,60
Calycolpus warszewiczianus Guayabo negro 6 2 0,	,08 4,58
Zuelania guidonea Cagajón 1 1 0,	,69 3,94
Astronium graveolens Ron ron 2 2 0,	36 3,92
Trichilia martiana Manteco 3 2 0,	3,90
Inga oerstediana Guaba 4 2 0,	,05 3,61
Pouteria campechiana Sapote 3 2 0,	,10 3,36
Bombacopsis sessilis Yuco 4 1 0,	,20 3,35
Schefflera morototoni Pavillo 3 2 0,	,10 3,35
Lonchocarpus oliganthus Chaperno 3 2 0,	,04 3,13
Swartzia ochnacea Naranjito 3 2 0,	,04 3,11
Mouriri myrtilloides Guayabillo 3 2 0,	,03 3,10
Ocotea insularis Aguacatillo 2 2 0,	,09 2,89
Dilodendron costaricense Iguano 2 2 0,	.04 2,69
Inga punctata Guaba 2 2 0,	.04 2,67
Chrysochlamys glauca Botoncillo 2 2 0,	.02 2,62

Especies	Nombre común	Abundancia	Frecuencia	Dominancia	IVI
Simarouba amara	Aceituno	2	1	0,20	2,47
Lonchocarpus minimiflorus	Chaperno	1	1	0,27	2,32
Chaunochiton kappleri	Corocito	1	1	0,20	2,06
Vochysia guatemalensis	Mayo blanco	2	1	0,04	1,84
Clarisia biflora	Ojoche negro	2	1	0,03	1,80
Trichilia hirta	Mata piojo	1	1	0,06	1,51
Garcinia madruno	Madroño	1	1	0,06	1,50
Leicontea amazonica	Costilla de danto	1	1	0,05	1,45
Ficus tonduzzi	Higuerón	1	1	0,05	1,45
Cosmibuena grandiflora	Magnolia	1	1	0,05	1,44
Dendropanax arboreus	Cacho de venado	1	1	0,04	1,43
Xylopia sericophylla	Malagueto	1	1	0,04	1,42
Annona papilionella	Anonillo	1	1	0,04	1,42
Casearia corimbosa	Garrapatillo	1	1	0,03	1,40
Guettarda crispiflora	Salvia de montaña	1	1	0,03	1,36
Stemmadenia donnellsmithii	Guijarro	1	1	0,02	1,35
Cestrum racemosum	Zorrillo	1	1	0,02	1,35
Ochroma pyramidale	Balsa	1	1	0,02	1,34
Henriettea sucosa	Canilla de mula	1	1	0,02	1,34
Nectandra sp. 4	Aguacatillo	1	1	0,02	1,34
Duguetia panamensis	Yayo amarillo	1	1	0,02	1,33
Protium pecuniosum	Canfín	1	1	0,02	1,33
Casearia aculeata	Capulín corona	1	1	0,02	1,33
Croton schiedeanus	Colpachí	1	1	0,01	1,32
Myriocarpa longipes	Ortiga	1	1	0,01	1,32
Eugenia uniflora	Pitanga	1	1	0,01	1,32
Casearia coronata	Garrapatillo	1	1	0,01	1,32
Cupania guatemalensis	Manteco	1	1	0,01	1,32
Casearia arborea	Manga larga	1	1	0,01	1,32

Especies	Nombre común	Abundancia	Frecuencia	Dominancia	IVI
Hura crepitans	Jabillo	1	1	0,01	1,31
Ocotea sp. 4	Aguacatillo	1	1	0,01	1,31
Picramnia latifolia	Coralillo	1	1	0,01	1,31
Guatteria amplifolia	Anonillo negro	1	1	0,01	1,31
Pseudolmedia spuria	Guapinolillo	1	1	0,01	1,30
Eugenia sp. 1	Murta	1	1	0,01	1,30
Hirtella racemosa	Garrapatillo	1	1	0,01	1,30

Anexo 3. Especies registradas en ecosistemas ribereños del río Volcán, subcuenca del río Grande de Térraba, 2017.

Especies	Nombre común	Abundancia	Frecuencia	Dominancia	IVI
Brosimum alicastrum	Ojoche	7	4	7,3	44,4
Mabea occidentalis	Guatuzo	16	5	0,9	20,4
Anacardium excelsum	Espavel	8	2	1,8	16,3
Homalium racemosum	Caracolillo	4	2	1,4	11,4
Stryphnodendron					
microstachyum	Vainillo	1	1	2,0	11,3
Heisteria concinna	Garrapatillo	6	4	0,3	9,7
Croton schiedeanus	Colpachí	8	3	0,2	9,3
Copaifera aromatica	Camíbar	4	2	0,8	8,7
Chrysochlamys glauca	Botoncillo	5	4	0,1	8,2
Trichilia pleeana	Fosforillo	4	4	0,1	7,4
Calophyllum brasiliense	Cedro María	5	2	0,3	6,9
Hirtella americana	Garrapatillo	4	3	0,1	6,5
Protium panamense	Canfín	5	2	0,2	6,4
Spondias radlkoferi	Jobo negro	3	2	0,4	6,0
Zygia longifolia	Zota caballo	3	2	0,3	5,8
Trichilia martiana	Manteco	4	2	0,2	5,7
Simarouba amara	Aceituno	3	2	0,2	5,1

Especies	Nombre común	Abundancia	Frecuencia	Dominancia	IVI
Bombacopsis sessilis	Yuco	2	2	0,3	5,0
Clarisia biflora	Ojoche negro	3	1	0,3	4,7
Cojoba costaricensis	Lorito	2	2	0,2	4,7
Brosimum costaricensis	Ojoche	1	1	0,6	4,6
Celtis schippii	Algodonero	3	2	0,1	4,5
Picramnia latifolia	Coralillo	3	2	0,1	4,5
Hymenaea courbaril	Guapinol	1	1	0,6	4,5
Lindackeria laurina	Carbonero	4	1	0,1	4,4
Trichilia hirta	Mata piojo	2	2	0,1	3,8
Stemmadenia donnellsmithii	Guijarro	2	2	0,1	3,8
Lonchocarpus oliganthus	Chaperno	2	2	0,0	3,7
Siparuna thecaphora	Limoncillo	3	1	0,1	3,6
Hura crepitans	Jabillo	1	1	0,4	3,6
Casearia corimbosa	Garrapatillo	3	1	0,1	3,4
Castilla tunu	Hule	2	1	0,2	3,3
Nectandra sp. 2	Aguacatillo	2	1	0,1	2,9
Leicontea amazonica	Costilla danto	1	1	0,2	2,8
Ceiba pentandra	Ceiba	2	1	0,1	2,8
Swartzia ochnacea	Naranjito	2	1	0,0	2,5
Ocotea atirrensis	Aguacatillo	1	1	0,1	2,1
Chaunochiton kappleri	Corocito	1	1	0,1	2,1
Pradosia atroviolacea	Nisperillo	1	1	0,0	2,0
Apeiba tibourbou	Peine de mico	1	1	0,0	2,0
Lacmellea panamensis	Lagarto negro	1	1	0,0	1,9
Bursera simaruba	Jinocuabe	1	1	0,0	1,9
Coccoloba venosa	Papaturro	1	1	0,0	1,9
Ficus costaricana	Higuerón	1	1	0,0	1,9
Tocoyena pittieri	Aguacate montaña	1	1	0,0	1,9
Senna spectabilis	Candelillo	1	1	0,0	1,9

Especies	Nombre común	Abundancia	Frecuencia	Dominancia	IVI
Mouriri myrtilloides	Guayabillo	1	1	0,0	1,8
Inga oerstediana	Guaba	1	1	0,0	1,8
Pterocarpus hayesii	Sangrillo	1	1	0,0	1,8
Nectandra sp. 3	Aguacatillo	1	1	0,0	1,8
Lonchocarpus costaricensis	Chaperno	1	1	0,0	1,8
Hirtella racemosa	Garrapatillo	1	1	0,0	1,8
Inga punctata	Guaba	1	1	0,0	1,8
Cestrum racemosum	Zorrillo	1	1	0,0	1,8
Inga barbourii	Guaba	1	1	0,0	1,8
Zhantoxylum riedelianum	Lagartillo	1	1	0,0	1,8

Anexo 4. Especies registradas en ecosistemas no ribereños de quebrada Fría, subcuenca del río Grande de Térraba, 2017.

Especies	Nombre común	Abundancia	Frecuencia	Dominancia	IVI
Castilla tunu	Hule	19	4	3,55	34,45
Hieronyma alchorneoides	Pilón	16	4	3,70	33,35
Ficus insipida	Higuerón	4	4	3,65	25,53
Schefflera morototoni	Pavillo	13	4	1,29	19,24
Guatteria amplifolia	Anonillo negro	7	3	0,61	10,92
Virola koschnyi	Fruta dorada	7	4	0,18	9,84
Chimarrhis latifolia	Yema de huevo	7	4	0,14	9,65
Platymiscium pinnatum	Cachimbo	5	3	0,60	9,59
Schizolobium parahyba	Gallinazo	2	2	0,95	8,33
Vochysia ferruginea	Mayo colorado	4	3	0,25	7,21
Cupania guatemalensis	Manteco	4	3	0,20	6,96
Croton schiedeanus	Colpachí	7	1	0,15	6,28
Spondias mombin	Jobo	2	2	0,49	5,99
Lonchocarpus oliganthus	Chaperno	3	3	0,08	5,71
Spondias radlkoferi	Jobo negro	2	1	0,63	5,60

Especies	Nombre común	Abundancia	Frecuencia	Dominancia	IVI
Ceiba pentandra	Ceiba	3	2	0,26	5,47
Dendropanax arboreus	Cacho de venado	5	1	0,21	5,36
Apeiba tibourbou	Peine de mico	3	1	0,40	5,06
Staphylea occidentalis	Cedrillo	3	2	0,09	4,64
Ocotea atirrensis	Aguacatillo	3	2	0,09	4,59
Alchornea costaricensis	Fosforillo	3	2	0,08	4,56
Guazuma ulmifolia	Guácimo	1	1	0,50	4,31
Inga punctata	Guaba	2	2	0,09	3,97
Ocotea sp2.	Aguacatillo	2	2	0,08	3,96
Trichilia martiana	Manteco	2	2	0,05	3,76
Protium glabrum	Canfín	3	1	0,10	3,51
Sapium glandulosum	Yos	1	1	0,29	3,21
Terminalia oblonga	Surá	1	1	0,24	2,98
Jacaranda caucana	Búho	2	1	0,05	2,64
Brosimum utile	Baco	2	1	0,03	2,56
Persea caerulea	Aguacatillo	1	1	0,15	2,54
Oxandra venezuelana	Yayo	1	1	0,11	2,32
Nectandra sp1.	Aguacatillo	1	1	0,07	2,14
Goethalsia meiantha	Guácimo blanco	1	1	0,05	2,03
Virola surinamensis	Fruta dorada	1	1	0,04	1,96
Casearia arborea	Manga larga	1	1	0,04	1,95
Ficus tonduzzi	Higuerón	1	1	0,04	1,95
Clarisia biflora	Ojoche negro	1	1	0,04	1,94
Trichilia hirta	Mata piojo	1	1	0,03	1,89
Hirtella americana	Garrapatillo	1	1	0,02	1,88
Zhantoxylum riedelianum	Lagartillo	1	1	0,02	1,88
Casearia sp1.	Plomillo	1	1	0,02	1,88
Protium pecuniosum	Canfín	1	1	0,02	1,85
Brosimum lactescens	Ojoche	1	1	0,02	1,85

Especies	Nombre común	Abundancia	Frecuencia	Dominancia	IVI
Hura crepitans	Jabillo	1	1	0,01	1,84
Miconia argentea	Lengua de vaca	1	1	0,01	1,82
Casearia sylvestris	Plomillo	1	1	0,01	1,82
Protium guianense	Canfín	1	1	0,01	1,82
Casearia aculeata	Capulín corona	1	1	0,01	1,81
Trophis racemosa	Ramón	1	1	0,01	1,81
Myrsine coriacea	Tucuico	1	1	0,01	1,81

Anexo 5. Especies registradas en ecosistemas ribereños de quebrada Fría, subcuenca del río Grande de Térraba, 2017.

Especies	Nombre común	Abundancia	Frecuencia	Dominancia	IVI
Anacardium excelsum	Espavel	11	4	9,37	51,90
Castilla tunu	Hule	26	5	1,70	29,16
Croton schiedeanus	Colpachí	31	4	0,48	25,69
Luehea seemannii	Guácimo colorado	8	3	3,01	21,49
Inga oerstediana	Guaba	6	4	0,12	9,08
Spondias radlkoferi	Jobo negro	2	2	1,16	8,67
Inga sp.1	Guaba	4	4	0,28	8,56
Cecropia peltata	Guarumo	6	3	0,11	7,78
Ficus insipida	Higuerón	2	2	0,75	6,88
Guatteria amplifolia	Anonillo negro	4	3	0,08	6,44
Ocotea atirrensis	Aguacatillo	4	3	0,06	6,39
Oxandra venezuelana	Yayo	3	1	0,75	6,26
Guazuma ulmifolia	Guácimo	2	2	0,58	6,16
Ochroma pyramidale	Balsa	4	2	0,26	6,00
Guarea grandifolia	Cedrillo	4	2	0,26	5,98
Sapium glandulosum	Yos	2	1	0,79	5,83
Chimarrhis latifolia	Yema de huevo	3	2	0,36	5,81
Ceiba pentandra	Ceiba	1	1	0,92	5,80

Especies	Nombre común	Abundancia	Frecuencia	Dominancia	IVI
Inga densiflora	Guaba	3	2	0,19	5,08
Guarea sp. 1	Cocora	2	1	0,22	3,38
Guarea macrophylla	Cocora	2	1	0,19	3,25
Virola surinamensis	Fruta dorada	1	1	0,31	3,19
Lonchocarpus oliganthus	Chaperno	2	1	0,10	2,89
Ocotea sp. 3	Aguacatillo	2	1	0,08	2,77
Platymiscium pinnatum	Cachimbo	2	1	0,06	2,68
Lonchocarpus minimiflorus	Chaperno	2	1	0,05	2,65
Theobroma cacao	Cacao	2	1	0,03	2,57
Drypetes standleyi	Madroño	1	1	0,17	2,55
Clarisia biflora	Ojoche negro	2	1	0,02	2,54
Sloanea terniflora	Pica pica	2	1	0,02	2,54
Inga punctata	Guaba	1	1	0,13	2,41
Ficus tonduzzi	Higuerón	1	1	0,10	2,27
Pouteria amygdalicarpa	Sapote	1	1	0,10	2,25
Cupania guatemalensis	Manteco	1	1	0,08	2,20
Mabea occidentalis	Guatuzo	1	1	0,08	2,19
Protium panamense	Canfín	1	1	0,07	2,13
Theobroma angustifolium	Cacao montaña	1	1	0,03	1,95
Spondias mombin	Jobo	1	1	0,02	1,93
Trichilia martiana	Manteco	1	1	0,02	1,92
Annona papilionella	Anonillo	1	1	0,02	1,92
Chrysochlamys glauca	Botoncillo	1	1	0,02	1,92
Picramnia latifolia	Coralillo	1	1	0,02	1,91
Adelia triloba	Clavillo	1	1	0,01	1,89
Myriocarpa longipes	Ortiga	1	1	0,01	1,89
Cosmibuena grandiflora	Magnolia	1	1	0,01	1,89
Casearia commersoniana	Garrapatillo	1	1	0,01	1,88
Cordia lucidula	Laurel	1	1	0,01	1,88

Especies	Nombre común	Abundancia	Frecuencia	Dominancia	IVI
Heisteria concinna	Garrapatillo	1	1	0,01	1,88
Lonchocarpus heptaphyllus	Chaperno	1	1	0,01	1,87
Stemmadenia donnellsmithii	Guijarro	1	1	0,01	1,87

Anexo 6. Especies registradas en ecosistemas no ribereños de quebrada Dibujada, subcuenca del río Grande de Térraba, 2017.

Especies	Nombre común	Abundancia	Frecuencia	Dominancia	IVI
Attalea rostrata	Corozo	15	4	1,46	27,44
Jacaranda caucana	Búho	14	4	1,12	24,06
Luehea seemannii	Guácimo colorado	4	2	1,84	20,12
Leptolobium panamense	Guayacán amarillo	12	3	0,88	19,43
Calliandra magdalenae	Cabello de ángel	9	4	0,31	14,11
Swartzia ochnacea	Naranjito	11	3	0,26	13,80
Lindackeria laurina	Carbonero	8	4	0,31	13,44
Ceiba pentandra	Ceiba	1	1	1,25	11,99
Hirtella americana	Garrapatillo	6	3	0,29	10,54
Calophyllum brasiliense	Cedro María	4	3	0,38	9,84
Guettarda crispiflora	Salvia de montaña	6	2	0,25	8,86
Lafoensia punicifolia	Cascarillo	4	3	0,22	8,56
Astronium graveolens	Ron ron	3	2	0,43	8,23
Anacardium excelsum	Espavel	1	1	0,71	7,70
Brosimum alicastrum	Ojoche	2	2	0,28	6,34
Schefflera morototoni	Pavillo	2	2	0,22	5,81
Trichilia americana	Cedrillo	2	2	0,19	5,58
Andira inermis	Arenillo	2	2	0,16	5,40
Trichilia pleeana	Fosforillo	3	2	0,07	5,37
Casearia sylvestris	Plomillo	3	2	0,07	5,30
Guatteria amplifolia	Anonillo negro	3	1	0,19	4,97
Hura crepitans	Jabillo	2	2	0,10	4,86

Especies	Nombre común	Abundancia	Frecuencia	Dominancia	IVI
Cecropia peltata	Guarumo	4	1	0,09	4,82
Hieronyma alchorneoides	Pilón	1	1	0,28	4,30
Nectandra umbrosa	Aguacatillo	2	2	0,02	4,28
Licania arborea	Alcornoque	1	1	0,28	4,26
Heisteria concinna	Garrapatillo	2	1	0,15	3,92
Goethalsia meiantha	Guácimo blanco	1	1	0,23	3,87
Guarea grandifolia	Cedrillo	2	1	0,06	3,22
Vochysia ferruginea	Mayo colorado	2	1	0,06	3,18
Miconia argentea	Lengua de vaca	2	1	0,05	3,17
Casearia aculeata	Capulín corona	1	1	0,12	3,00
Zuelania guidonea	Cagajón	1	1	0,05	2,44
Byrsonima crassifolia	Nance	1	1	0,05	2,42
Chrysochlamys glauca	Botoncillo	1	1	0,03	2,25
Myrsine coriacea	Tucuico	1	1	0,03	2,25
Trichilia hirta	Mata piojo	1	1	0,02	2,20
Trichilia martiana	Manteco	1	1	0,02	2,20
Croton schiedeanus	Colpachí	1	1	0,02	2,18
Ocotea sp. 1	Aguacatillo	1	1	0,02	2,17
Alibertia edulis	Madroño	1	1	0,01	2,12

Anexo 7. Especies registradas en ecosistemas ribereños de quebrada Dibujada, subcuenca del río Grande de Térraba, 2017.

Especies	Nombre común	Abundancia	Frecuencia	Dominancia	IVI
Anacardium excelsum	Espavel	8	4	9,52	55,29
Attalea rostrata	Corozo	21	5	2,44	32,11
Calliandra magdalenae	Cabello de ángel	28	5	0,69	28,49
Calophyllum brasiliense	Cedro María	12	4	1,60	20,88
Swartzia ochnacea	Naranjito	12	5	0,22	15,76
Luehea seemannii	Guácimo colorado	9	2	1,39	15,15

Especies	Nombre común	Abundancia	Frecuencia	Dominancia	IVI
Jacaranda caucana	Búho	6	4	0,59	12,17
Brosimum alicastrum	Ojoche	2	2	1,20	9,65
Castilla tunu	Hule	4	3	0,55	9,33
Spondias radlkoferi	Jobo negro	2	2	0,38	5,81
Licania arborea	Alcornoque	2	2	0,30	5,46
Bursera simaruba	Jinocuabe	2	2	0,27	5,31
Croton schiedeanus	Colpachí	3	2	0,07	5,06
Andira inermis	Arenillo	3	2	0,07	5,06
Lafoensia punicifolia	Cascarillo	2	2	0,18	4,90
Hirtella americana	Garrapatillo	2	2	0,13	4,69
Hura crepitans	Jabillo	2	2	0,07	4,37
Copaifera aromatica	Camíbar	2	1	0,28	3,98
Myrsine coriacea	Tucuico	3	1	0,04	3,55
Schefflera morototoni	Pavillo	2	1	0,08	3,07
Byrsonima crassifolia	Nance	1	1	0,22	3,06
Leptolobium panamense	Guayacán amarillo	2	1	0,07	3,01
Trichilia hirta	Mata piojo	2	1	0,06	2,97
Trichilia pleeana	Fosforillo	2	1	0,05	2,93
Lindackeria laurina	Carbonero	2	1	0,05	2,90
Cecropia peltata	Guarumo	2	1	0,02	2,79
Celtis schippii	Algodonero	1	1	0,16	2,77
Ficus sp.1	Higuerón	1	1	0,13	2,62
Dendropanax arboreus	Cacho de venado	1	1	0,10	2,48
Zuelania guidonea	Cagajón	1	1	0,09	2,44
Guazuma ulmifolia	Guácimo	1	1	0,08	2,42
Trichilia americana	Cedrillo	1	1	0,07	2,36
Sloanea terniflora	Pica pica	1	1	0,05	2,28
Nectandra umbrosa	Aguacatillo	1	1	0,05	2,24
Chrysochlamys glauca	Botoncillo	1	1	0,03	2,16

Especies	Nombre común	Abundancia	Frecuencia	Dominancia	IVI
Alibertia edulis	Madroño	1	1	0,02	2,12
Goethalsia meiantha	Guácimo blanco	1	1	0,02	2,10
Heisteria concinna	Garrapatillo	1	1	0,02	2,10
Trichilia martiana	Manteco	1	1	0,01	2,08
Dracaena fragrans	Caña india	1	1	0,01	2,07

Anexo 8. Prioridad para restauración de bosque ribereño de las especies registradas en las subcuencas del río Volcán y quebradas Fría y Dibujada, subcuencas del río Grande de Térraba, 2017.

Nombre científico	Nombre Común	Familia	Prioridad
Adelia triloba	Clavillo	Euphorbiaceae	1
Alchornea costaricensis	Fosforillo	Euphorbiaceae	4
Alibertia edulis	Madroño	Rubiaceae	3
Anacardium excelsum	Espavel	Anacardiaceae	2
Andira inermis	Arenillo	Fabaceae	2
Annona papilionella	Anonillo	Annonaceae	3
Apeiba tibourbou	Peine de mico	Malvaceae	3
Astronium graveolens	Ron ron	Anacardiaceae	4
Attalea rostrata	Corozo	Arecaceae	2
Bombacopsis sessilis	Yuco	Bombacaceae	3
Brosimum alicastrum	Ojoche	Moraceae	2
Brosimum costaricensis	Ojoche	Moraceae	3
Brosimum lactescens	Ojoche	Moraceae	4
Brosimum utile	Васо	Moraceae	4
Bursera simaruba	Jinocuabe	Burseraceae	1
Byrsonima crassifolia	Nance	Malpighiaceae	3
Calliandra magdalenae	Cabello de ángel	Fabaceae	2
Calophyllum brasiliense	Cedro María	Clusiaceae	2
Calycolpus warszewiczianus	Guayabo negro	Myrtaceae	4

Nombre científico	Nombre Común	Familia	Prioridad
Caryocar costaricense	Ajo	Cariocaraceae	4
Casearia aculeata	Capulín corona	Salicaceae	4
Casearia arborea	Manga larga	Salicaceae	4
Casearia sp1	Plomillo	Salicaceae	4
Casearia commersoniana	Garrapatillo	Salicaceae	1
Casearia corimbosa	Garrapatillo	Salicaceae	2
Casearia coronata	Garrapatillo	Salicaceae	4
Casearia sylvestris	Plomillo	Salicaceae	4
Castilla tunu	Hule	Moraceae	2
Cecropia peltata	Guarumo	Cecropiaceae	2
Ceiba pentandra	Ceiba	Bombacaceae	3
Celtis schippii	Algodonero	Ulmaceae	1
Cestrum racemosum	Zorrillo	Solanaceae	3
Chaunochiton kappleri	Corocito	Olacaceae	3
Chimarrhis latifolia	Yema de huevo	Rubiaceae	3
Chrysochlamys glauca	Botoncillo	Clusiaceae	2
Clarisia biflora	Ojoche negro	Moraceae	2
Coccoloba venosa	Papaturro	Polygonaceae	1
Cojoba costaricensis	Lorito de montaña	Fabaceae	3
Copaifera aromatica	Camíbar	Fabaceae	1
Cordia lucidula	Laurel	Boraginaceae	1
Cosmibuena grandiflora	Magnolia	Rubiaceae	3
Croton schiedeanus	Colpachí	Euphorbiaceae	2
Cupania guatemalensis	Manteco	Sapindaceae	3
Dendropanax arboreus	Cacho de venado	Araliaceae	3
Dilodendron costaricense	Iguano	Sapindaceae	4
Dracaena fragrans	Caña india	Asparagaceae	1
Drypetes standleyi	Madroño	Putranjivaceae	1
Duguetia panamensis	Yayo amarillo	Annonaceae	4

Nombre científico	Nombre Común	Familia	Prioridad
Eugenia sp1	Murta	Myrtaceae	4
Eugenia uniflora	Pitanga	Myrtaceae	4
Ficus costaricana	Higuerón	Moraceae	1
Ficus sp1	Higuerón	Moraceae	1
Ficus insipida	Higuerón	Moraceae	3
Ficus tonduzzi	Higuerón	Moraceae	3
Garcinia madruno	Madroño	Clusiaceae	4
Goethalsia meiantha	Guácimo blanco	Malvaceae	3
Guarea grandifolia	Cedrillo	Meliaceae	2
Guarea sp1	Cocora	Meliaceae	1
Guarea macrophylla	Cocora	Meliaceae	1
Guatteria amplifolia	Anonillo negro	Annonaceae	3
Guazuma ulmifolia	Guácimo	Malvaceae	2
Guettarda crispiflora	Salvia de montaña	Rubiaceae	4
Heisteria concinna	Garrapatillo	Chrysobalanaceae	3
Henriettea sucosa	Canilla de mula	Melastomataceae	4
Hieronyma alchorneoides	Pilón	Euphorbiaceae	4
Hirtella americana	Garrapatillo	Chrysobalanaceae	3
Hirtella racemosa	Garrapatillo	Chrysobalanaceae	3
Homalium racemosum	Caracolillo	Salicaceae	1
Hura crepitans	Jabillo	Euphorbiaceae	3
Hymenaea courbaril	Guapinol	Fabaceae	1
Inga barbourii	Guaba	Fabaceae	1
Inga densiflora	Guaba	Fabaceae	1
Inga sp1	Guaba	Fabaceae	1
Inga oerstediana	Guaba	Fabaceae	2
Inga punctata	Guaba	Fabaceae	2
Jacaranda caucana	Búho	Bignoniaceae	3
Lacmellea panamensis	Lagarto negro	Apocynaceae	3

Nombre científico	Nombre Común	Familia	Prioridad
Lafoensia punicifolia	Cascarillo	Lythraceae	3
Leicontea amazonica	Costilla de danto	Fabaceae	3
Leptolobium panamense	Guayacán amarillo	Fabaceae	3
Licania arborea	Alcornoque	Chrysobalanaceae	2
Lindackeria laurina	Carbonero	Achariaceae	3
Lonchocarpus costaricensis	Chaperno	Fabaceae	1
Lonchocarpus heptaphyllus	Chaperno	Fabaceae	1
Lonchocarpus minimiflorus	Chaperno	Fabaceae	2
Lonchocarpus oliganthus	Chaperno	Fabaceae	3
Luehea seemannii	Guácimo colorado	Malvaceae	2
Mabea occidentalis	Guatuzo	Euphorbiaceae	2
Miconia argentea	Lengua de vaca	Melastomataceae	4
Mouriri myrtilloides	Guayabillo	Myrtaceae	3
Myriocarpa longipes	Ortiga	Urticaceae	3
Myrsine coriacea	Tucuico	Myrsinaceae	2
Nectandra sp1	Aguacatillo	Lauraceae	4
Nectandra sp2	Aguacatillo	Lauraceae	1
Nectandra sp3	Aguacatillo	Lauraceae	1
Nectandra sp4	Aguacatillo	Lauraceae	4
Nectandra umbrosa	Aguacatillo	Lauraceae	3
Ochroma pyramidale	Balsa	Malvaceae	2
Ocotea atirrensis	Aguacatillo	Lauraceae	2
Ocotea insularis	Aguacatillo	Lauraceae	4
Ocotea sp1	Aguacatillo	Lauraceae	4
Ocotea sp2	Aguacatillo	Lauraceae	4
Ocotea sp3	Aguacatillo	Lauraceae	1
Ocotea sp4	Aguacatillo	Lauraceae	4
Oxandra venezuelana	Yayo	Annonaceae	3
Persea caerulea	Aguacatillo	Lauraceae	4

Nombre científico	Nombre Común	Familia	Prioridad
Picramnia latifolia	Coralillo	Simaroubaceae	2
Platymiscium pinnatum	Cachimbo	Fabaceae	3
Pouteria amygdalicarpa	Sapote	Sapotaceae	1
Pouteria campechiana	Sapote	Sapotaceae	4
Pradosia atroviolacea	Nisperillo	Sapotaceae	3
Protium glabrum	Canfín	Burseraceae	4
Protium guianense	Canfín	Burseraceae	4
Protium panamense	Canfín	Burseraceae	3
Protium pecuniosum	Canfín	Burseraceae	4
Pseudolmedia spuria	Guapinolillo	Moraceae	4
Pterocarpus hayesii	Sangrillo	Fabaceae	1
Sapium glandulosum	Yos	Euphorbiaceae	2
Schefflera morototoni	Pavillo	Araliaceae	3
Schizolobium parahyba	Gallinazo	Fabaceae	4
Senna spectabilis	Candelillo	Fabaceae	1
Simarouba amara	Aceituno	Simaroubaceae	2
Siparuna thecaphora	Limoncillo, pasmo	Siparunaceae	1
Sloanea terniflora	Pica pica	Elaeocarpaceae	1
Spondias mombin	Jobo	Anacardiaceae	3
Spondias radlkoferi	Jobo negro	Anacardiaceae	2
Staphylea occidentalis	Cedrillo	Staphyleaceae	4
Stemmadenia donnellsmithii	Guijarro	Apocynaceae	2
Stryphnodendron microstachyum	Vainillo	Fabaceae	1
Swartzia ochnacea	Naranjito	Fabaceae	2
Terminalia oblonga	Surá	Combretaceae	4
Tetragastris panamensis	Canfín	Burseraceae	4
Theobroma angustifolium	Cacao de montaña	Malvaceae	1
Theobroma cacao	Cacao	Malvaceae	1
Tocoyena pittieri	Aguacate de montaña	Rubiaceae	1

Nombre científico	Nombre Común	Familia	Prioridad
Trichilia americana	Cedrillo	Meliaceae	3
Trichilia hirta	Mata piojo	Meliaceae	2
Trichilia martiana	Manteco	Meliaceae	3
Trichilia pleeana	Fosforillo	Meliaceae	2
Trophis racemosa	Ramón	Moraceae	4
Virola koschnyi	Fruta dorada	Myristicaceae	4
Virola surinamensis	Fruta dorada	Myristicaceae	3
Vochysia ferruginea	Mayo colorado	Vochysiaceae	4
Vochysia guatemalensis	Mayo blanco	Vochysiaceae	4
Xylopia sericophylla	Malagueto	Annonaceae	4
Zhantoxylum riedelianum	Lagartillo	Rutaceae	3
Zuelania guidonea	Cagajón	Salicaceae	3
Zygia longifolia	Zota caballo	Fabaceae	1

Prioridad: 1: Identificadas solo en ecosistema ribereño/ 2: Identificadas en ambos ecosistemas pero con mayor abundancia, frecuencia, dominancia e IVI en ecosistemas ribereños/ 3: Identificadas en ambos ecosistemas/ 4: Identificadas solo en ecosistemas no ribereños.